Effects of different vegetation types on burnt soil properties and microbial communities

The intensive wildfires recurring in the Mediterranean area modify soil physico-chemical properties, in turn inducing changes in soil microbial abundance and activity. Soils were sampled from burnt and adjacent unburnt sites within Vesuvius National Park 1 year after a large wildfire occurred in sum...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of wildland fire 2020-01, Vol.29 (7), p.628-636
Hauptverfasser: Panico, Speranza C., Ceccherini, Maria T., Memoli, Valeria, Maisto, Giulia, Pietramellara, Giacomo, Barile, Rossella, De Marco, Anna
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The intensive wildfires recurring in the Mediterranean area modify soil physico-chemical properties, in turn inducing changes in soil microbial abundance and activity. Soils were sampled from burnt and adjacent unburnt sites within Vesuvius National Park 1 year after a large wildfire occurred in summer 2017. The aims of the present study were to evaluate the effects of fires on soil characteristics and to investigate whether different plant types contribute to mitigating or enhancing these effects. The results showed lower organic matter and water content and a higher C/N ratio in burnt than in unburnt soils. In particular, this trend was the same for all the plant types investigated, with the exception of soils covered by black locust tree and holm oak, which showed a higher C/N ratio in unburnt than in burnt soils. In soils covered by holm oaks, a shift in the bacterial and fungal fractions occurred between burnt and unbumt soils, whereas the amount of ammonia oxidisers was notably higher in burnt than in unburnt soils covered by black locusts; the highest N concentration was also measured in burnt soils covered by black locusts. The burnt soils showed a lower metabolic quotient and a higher rate of organic carbon mineralisation compared with unburnt soils, and this trend was particularly evident in soils under herbaceous plants. The findings suggest that soils covered by herbaceous species are more sensitive to fire effects and less able to restore their functionality compared with soils covered by trees.
ISSN:1049-8001
1448-5516
DOI:10.1071/WF19081