133 CRISPR/Cas9 gene editing of invivo-fertilized bovine embryos via endoscopic oviductal flushing and electroporation of zygotes
In recent years, CRISPR/Cas9 has been used to efficiently edit the genomes of embryos in many animal models. Due to smaller anatomy, lower costs, and multiple ovulations, it is relatively simple to derive large numbers of invivo fertilized zygotes for gene editing experiments in small mammal models....
Gespeichert in:
Veröffentlicht in: | Reproduction fertility and development 2020, Vol.32 (2), p.193 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In recent years, CRISPR/Cas9 has been used to efficiently edit the genomes of embryos in many animal models. Due to smaller anatomy, lower costs, and multiple ovulations, it is relatively simple to derive large numbers of invivo fertilized zygotes for gene editing experiments in small mammal models. In cattle, however, harvesting invivo fertilized zygotes generally requires a highly invasive surgical procedure. Here, we use the combination of a minimally invasive endoscopic method for harvesting invivo fertilized zygotes by oviductal flushing of superovulated heifers and the subsequent electroporation of zygotes with CRISPR/Cas9 ribonucleoproteins (RNP). After superstimulation of 21 heifers, on average 12 zygotes were flushed per animal with fetal bovine serum, then stored in synthetic oviductal fluid (SOFaa) before electroporation. Targeting exon 1 of the tyrosinase (Tyr) gene, zygotes were electroporated in 1-mm gap cuvettes (Biorad) in groups of ~20 in 20μL of OptiMEM media containing 3μM Cas9 RNP (IDT Cas9 protein pre-incubated with anti-Tyr guide RNA). Electroporation was performed in 3 replicates of 3 electrical potentials, namely 20, 25, and 30V using a Biojet CF 50. The other electroporation parameters were fixed at 5 repetitions of 2-ms square wave pulses at 100-ms intervals. The zygotes were than cultured under standard embryo culture conditions (SOFaa + 0.3% bovine serum albumin, 5% CO2, 5% O2, 39°C, humidified air). Embryo survival, cleavage, and developmental rates to the blastocyst stage were tracked. Statistical significance between groups was determined by pairwise one-way ANOVA using Sidak correction for multiple comparisons. Electroporation of invivo-derived zygotes using 20V yielded significantly higher survival (83.6% vs. 42.8% vs. 20.7% for 20, 25, and 30V, respectively), cleavage (65.6% vs. 37.9% vs. 40.0%), and developmental rates (47.5% vs. 21.4% vs. 16.5%) than 25 or 30V. There was no statistical difference between 25 and 30V. Subsequently, editing rates were determined using the T7 mismatch assay and verified with Sanger sequencing followed by sequence alignment and analysis using Tracking of Indels by Decomposition (TIDE) software (https://tide.nki.nl/). Although there was high variance between electroporation groups, blastocyst editing rates of up to 80.0% were achieved using 30V. To our knowledge, these are the first confirmed gene-edited bovine embryos produced from invivo fertilized zygotes. This method offers the ability to |
---|---|
ISSN: | 1031-3613 |
DOI: | 10.1071/RDv32n2Ab133 |