Biological nitrogen fixation associated with tropical pasture grasses
This paper originates from an address at the 8th International Symposium on Nitrogen Fixation with Non-Legumes, Sydney, NSW, December 2000 The semi-humid or humid tropics are ideal for the production of large quantities of biomass from fast-growing C 4 grasses, but high yields normally require large...
Gespeichert in:
Veröffentlicht in: | Australian journal of plant physiology 2001, Vol.28 (9), p.837-844 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper originates from an address at the 8th International Symposium on Nitrogen Fixation with Non-Legumes, Sydney, NSW, December 2000 The semi-humid or humid tropics are ideal for the production of large quantities of biomass from fast-growing C 4 grasses, but high yields normally require large quantities of fertiliser, especially N, which has a very high input from fossil fuels (natural gas). A program has been started recently to use elephant grass ( Pennisetum purpureum Schum.) to substitute firewood as a fuel and also to make charcoal for iron production. In this case, any large N fertiliser additions would mean that the yield of bio fuel per unit of fossil fuel invested would be detrimentally affected. In this study, we report on the potential for the selection of genotypes of fast-growing C 4 tropical grasses of the genera Pennisetum and Brachiaria for their capacity to obtain N inputs from plant-associated biological nitrogen fixation (BNF). Fourteen genotypes each of Brachiaria and Pennisetum were screened for BNF contributions by growing them in 15 N-labelled soil. In the case of the Pennisetum , after a suitable cutting height for the crop had been selected, there were large differences in dry matter production, N accumulation and 15 N enrichment. The differences in 15 N enrichment between genotypes were statistically significant and BNF inputs were estimated as high as 41% of accumulated N. In the study on Brachiaria genotypes, potential inputs of BNF seemed lower. Only one or two genotypes of B. brizantha and B. ruziziensis obtained more then 20% of their N from BNF. The N 2 -fixing bacteria that were most commonly associated with shoots and roots the Pennisetum genotypes were of the genus Herbaspirillum , but predominantly of a recently described new species. The Brachiaria spp. from three different sites (Rio de Janeiro, Goânia, Bahia) were predominately colonised by Azospirillum spp., most of the isolates being of the species Azospirillum amazonense. Very few Herbaspirilla were isolated from these plants. Australian Journal of Plant Physiology 28(9) 837 - 844 Full text doi:10.1071/PP01079 © CSIRO 2001 |
---|---|
ISSN: | 0310-7841 1445-4408 1445-4416 1446-5655 |
DOI: | 10.1071/PP01079 |