Monotone path-connectedness of Chebyshev sets in three-dimensional spaces
We characterize the three-dimensional Banach spaces in which any Chebyshev set is monotone path-connected. Namely, we show that in a three-dimensional space each Chebyshev set is monotone path- connected if and only if one of the following two conditions is satisfied: any exposed point of the unit s...
Gespeichert in:
Veröffentlicht in: | Sbornik. Mathematics 2021-05, Vol.212 (5), p.636-654 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We characterize the three-dimensional Banach spaces in which any Chebyshev set is monotone path-connected. Namely, we show that in a three-dimensional space each Chebyshev set is monotone path- connected if and only if one of the following two conditions is satisfied: any exposed point of the unit sphere of is a smooth point or (that is, the unit sphere of is a cylinder).
Bibliography: 17 titles. |
---|---|
ISSN: | 1064-5616 1468-4802 |
DOI: | 10.1070/SM9325 |