Convergence of Shafer quadratic approximants
Let [functionof] [setmembership]M([scriptR] sub(3)) be a (single-valued) meromorphic function on a Riemann surface with three sheets [pi]:[scriptR] sub(3) arrow right [dbl-struck R] (z [mapsto] z) which has only second-order branch points and does not have z= [infinity] as a branch point. The set [p...
Gespeichert in:
Veröffentlicht in: | Russian mathematical surveys 2016-01, Vol.71 (2), p.373-375 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let [functionof] [setmembership]M([scriptR] sub(3)) be a (single-valued) meromorphic function on a Riemann surface with three sheets [pi]:[scriptR] sub(3) arrow right [dbl-struck R] (z [mapsto] z) which has only second-order branch points and does not have z= [infinity] as a branch point. The set [pi] super(-1)([infinity]) consists of three distinct points. We identify one of them, [infinity] super((1))[setmembership] [dbl-struck R] sub(3), with the point [infinity] [setmembership] [dbl-struck C] and assume that [functionof] [setmembership] [scriptH]([infinity]). Let [scriptU] be an Abelian integral of the third kind on [scriptR] sub(3) with purely imaginary periods that has singularities only at points in [pi] super(-1)([infinity]) and satisfies [scriptU](z) = -2log z+ (regular terms) as z arrow right [infinity] super((1)) and [scriptU](z) = log z+ (regular terms) as z tends to any other point in [pi] super(-1)([infinity]). The inequalities Re [scriptU](z super((1))) < Re [scriptU](z super((2))) < Re [scriptU](z super((3))) partition the Riemann surface [scriptR] sub(3) into three open 'sheets' [scriptR] super((1))[suchthat] [infinity] super((1)), [scriptR] super((2)), and [scriptR] super((3)). |
---|---|
ISSN: | 0036-0279 1468-4829 |
DOI: | 10.1070/RM9714 |