On comparing systems of random variables with the Rademacher sequence

We ask whether inequalities between distributions of scalar polynomials of two sequences of random variables imply that the corresponding inequalities hold between the distributions of the norms of the corresponding vector sums in an arbitrary Banach space provided that one of the systems is the Rad...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Izvestiya. Mathematics 2017-12, Vol.81 (6), p.1063-1079
1. Verfasser: Astashkin, S. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We ask whether inequalities between distributions of scalar polynomials of two sequences of random variables imply that the corresponding inequalities hold between the distributions of the norms of the corresponding vector sums in an arbitrary Banach space provided that one of the systems is the Rademacher system. We show that the answer is affirmative when the Rademacher functions form the majorizing system, and negative in the opposite case.
ISSN:1064-5632
1468-4810
DOI:10.1070/IM8468