Solid-state reactions at niobium–germanium interfaces in hybrid quantum electronics
Hybrid superconductor–semiconductor materials systems are promising candidates for quantum computing applications. Their integration into superconducting electronics has enabled on-demand voltage tunability at millikelvin temperatures. Ge quantum wells have been among the semiconducting platforms in...
Gespeichert in:
Veröffentlicht in: | AIP advances 2024-09, Vol.14 (9), p.095311-095311-6 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 095311-6 |
---|---|
container_issue | 9 |
container_start_page | 095311 |
container_title | AIP advances |
container_volume | 14 |
creator | Langa, B. Sapkota, D. Lainez, I. Haight, R. Srijanto, B. Feldman, L. Hijazi, H. Zhu, X. Hu, L. Kim, M. Sardashti, K. |
description | Hybrid superconductor–semiconductor materials systems are promising candidates for quantum computing applications. Their integration into superconducting electronics has enabled on-demand voltage tunability at millikelvin temperatures. Ge quantum wells have been among the semiconducting platforms interfaced with superconducting Al to realize voltage tunable Josephson junctions. Here, we explore Nb as a superconducting material in direct contact with Ge channels by focusing on the solid-state reactions at the Nb/Ge interfaces. We employ Nb evaporation at cryogenic temperatures (∼100 K) to establish a baseline structure with atomically and chemically abrupt Nb/Ge interfaces. By conducting systematic photoelectron spectroscopy and transport measurements on Nb/Ge samples across varying annealing temperatures, we elucidated the influence of Ge out-diffusion on the ultimate performance of superconducting electronics. This study underlines the need for low-temperature growth to minimize chemical intermixing and band bending at the Nb/Ge interfaces. |
doi_str_mv | 10.1063/5.0221366 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0221366</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_4b40861501e44631b355bfe6816e2bf3</doaj_id><sourcerecordid>3104168481</sourcerecordid><originalsourceid>FETCH-LOGICAL-c283t-ebda308189c6e7396e924837edd083eae59147eff0781edbfe78b67b63b9b3b83</originalsourceid><addsrcrecordid>eNp9kc9KAzEQxoMoWGoPvsGCJ4WtySabzR6l-KdQ8KA9hyQ7W1PaTZtkD735Dr6hT2J0i3hyLvMx8-ObYQahS4KnBHN6W05xURDK-QkaFaQUOS0KfvpHn6NJCGucgtUECzZCyxe3sU0eooqQeVAmWteFTMWss07bfvv5_rECv1Vd0pntIvhWGQhJZm8H7W2T7XvVxdSEDZjoXWdNuEBnrdoEmBzzGC0f7l9nT_ni-XE-u1vkphA05qAbRbEgojYcKlpzqAsmaAVNgwUFBWVNWAVtiytBoNEtVELzSnOqa021oGM0H3wbp9Zy5-1W-YN0ysqfgvMrqXy0ZgOSaYYFJyUmwBinRNOyTIZcEA6Fbmnyuhq8dt7tewhRrl3vu7S-pAQzwgUTJFHXA2W8C8FD-zuVYPn9BFnK4xMSezOwwdh033TYf-AvWrCHAg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3104168481</pqid></control><display><type>article</type><title>Solid-state reactions at niobium–germanium interfaces in hybrid quantum electronics</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Langa, B. ; Sapkota, D. ; Lainez, I. ; Haight, R. ; Srijanto, B. ; Feldman, L. ; Hijazi, H. ; Zhu, X. ; Hu, L. ; Kim, M. ; Sardashti, K.</creator><creatorcontrib>Langa, B. ; Sapkota, D. ; Lainez, I. ; Haight, R. ; Srijanto, B. ; Feldman, L. ; Hijazi, H. ; Zhu, X. ; Hu, L. ; Kim, M. ; Sardashti, K.</creatorcontrib><description>Hybrid superconductor–semiconductor materials systems are promising candidates for quantum computing applications. Their integration into superconducting electronics has enabled on-demand voltage tunability at millikelvin temperatures. Ge quantum wells have been among the semiconducting platforms interfaced with superconducting Al to realize voltage tunable Josephson junctions. Here, we explore Nb as a superconducting material in direct contact with Ge channels by focusing on the solid-state reactions at the Nb/Ge interfaces. We employ Nb evaporation at cryogenic temperatures (∼100 K) to establish a baseline structure with atomically and chemically abrupt Nb/Ge interfaces. By conducting systematic photoelectron spectroscopy and transport measurements on Nb/Ge samples across varying annealing temperatures, we elucidated the influence of Ge out-diffusion on the ultimate performance of superconducting electronics. This study underlines the need for low-temperature growth to minimize chemical intermixing and band bending at the Nb/Ge interfaces.</description><identifier>ISSN: 2158-3226</identifier><identifier>EISSN: 2158-3226</identifier><identifier>DOI: 10.1063/5.0221366</identifier><identifier>CODEN: AAIDBI</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Cryogenic temperature ; Electric potential ; Electronics ; Germanium ; Josephson junctions ; Low temperature ; Niobium ; Photoelectrons ; Quantum computing ; Quantum electronics ; Quantum wells ; Semiconductor materials ; Solid state ; Superconductivity ; Voltage</subject><ispartof>AIP advances, 2024-09, Vol.14 (9), p.095311-095311-6</ispartof><rights>Author(s)</rights><rights>2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c283t-ebda308189c6e7396e924837edd083eae59147eff0781edbfe78b67b63b9b3b83</cites><orcidid>0009-0007-3816-2813 ; 0000-0002-5781-1723 ; 0009-0004-2214-1178 ; 0000-0002-3397-8262</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,2096,27901,27902</link.rule.ids></links><search><creatorcontrib>Langa, B.</creatorcontrib><creatorcontrib>Sapkota, D.</creatorcontrib><creatorcontrib>Lainez, I.</creatorcontrib><creatorcontrib>Haight, R.</creatorcontrib><creatorcontrib>Srijanto, B.</creatorcontrib><creatorcontrib>Feldman, L.</creatorcontrib><creatorcontrib>Hijazi, H.</creatorcontrib><creatorcontrib>Zhu, X.</creatorcontrib><creatorcontrib>Hu, L.</creatorcontrib><creatorcontrib>Kim, M.</creatorcontrib><creatorcontrib>Sardashti, K.</creatorcontrib><title>Solid-state reactions at niobium–germanium interfaces in hybrid quantum electronics</title><title>AIP advances</title><description>Hybrid superconductor–semiconductor materials systems are promising candidates for quantum computing applications. Their integration into superconducting electronics has enabled on-demand voltage tunability at millikelvin temperatures. Ge quantum wells have been among the semiconducting platforms interfaced with superconducting Al to realize voltage tunable Josephson junctions. Here, we explore Nb as a superconducting material in direct contact with Ge channels by focusing on the solid-state reactions at the Nb/Ge interfaces. We employ Nb evaporation at cryogenic temperatures (∼100 K) to establish a baseline structure with atomically and chemically abrupt Nb/Ge interfaces. By conducting systematic photoelectron spectroscopy and transport measurements on Nb/Ge samples across varying annealing temperatures, we elucidated the influence of Ge out-diffusion on the ultimate performance of superconducting electronics. This study underlines the need for low-temperature growth to minimize chemical intermixing and band bending at the Nb/Ge interfaces.</description><subject>Cryogenic temperature</subject><subject>Electric potential</subject><subject>Electronics</subject><subject>Germanium</subject><subject>Josephson junctions</subject><subject>Low temperature</subject><subject>Niobium</subject><subject>Photoelectrons</subject><subject>Quantum computing</subject><subject>Quantum electronics</subject><subject>Quantum wells</subject><subject>Semiconductor materials</subject><subject>Solid state</subject><subject>Superconductivity</subject><subject>Voltage</subject><issn>2158-3226</issn><issn>2158-3226</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kc9KAzEQxoMoWGoPvsGCJ4WtySabzR6l-KdQ8KA9hyQ7W1PaTZtkD735Dr6hT2J0i3hyLvMx8-ObYQahS4KnBHN6W05xURDK-QkaFaQUOS0KfvpHn6NJCGucgtUECzZCyxe3sU0eooqQeVAmWteFTMWss07bfvv5_rECv1Vd0pntIvhWGQhJZm8H7W2T7XvVxdSEDZjoXWdNuEBnrdoEmBzzGC0f7l9nT_ni-XE-u1vkphA05qAbRbEgojYcKlpzqAsmaAVNgwUFBWVNWAVtiytBoNEtVELzSnOqa021oGM0H3wbp9Zy5-1W-YN0ysqfgvMrqXy0ZgOSaYYFJyUmwBinRNOyTIZcEA6Fbmnyuhq8dt7tewhRrl3vu7S-pAQzwgUTJFHXA2W8C8FD-zuVYPn9BFnK4xMSezOwwdh033TYf-AvWrCHAg</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Langa, B.</creator><creator>Sapkota, D.</creator><creator>Lainez, I.</creator><creator>Haight, R.</creator><creator>Srijanto, B.</creator><creator>Feldman, L.</creator><creator>Hijazi, H.</creator><creator>Zhu, X.</creator><creator>Hu, L.</creator><creator>Kim, M.</creator><creator>Sardashti, K.</creator><general>American Institute of Physics</general><general>AIP Publishing LLC</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0007-3816-2813</orcidid><orcidid>https://orcid.org/0000-0002-5781-1723</orcidid><orcidid>https://orcid.org/0009-0004-2214-1178</orcidid><orcidid>https://orcid.org/0000-0002-3397-8262</orcidid></search><sort><creationdate>20240901</creationdate><title>Solid-state reactions at niobium–germanium interfaces in hybrid quantum electronics</title><author>Langa, B. ; Sapkota, D. ; Lainez, I. ; Haight, R. ; Srijanto, B. ; Feldman, L. ; Hijazi, H. ; Zhu, X. ; Hu, L. ; Kim, M. ; Sardashti, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c283t-ebda308189c6e7396e924837edd083eae59147eff0781edbfe78b67b63b9b3b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cryogenic temperature</topic><topic>Electric potential</topic><topic>Electronics</topic><topic>Germanium</topic><topic>Josephson junctions</topic><topic>Low temperature</topic><topic>Niobium</topic><topic>Photoelectrons</topic><topic>Quantum computing</topic><topic>Quantum electronics</topic><topic>Quantum wells</topic><topic>Semiconductor materials</topic><topic>Solid state</topic><topic>Superconductivity</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Langa, B.</creatorcontrib><creatorcontrib>Sapkota, D.</creatorcontrib><creatorcontrib>Lainez, I.</creatorcontrib><creatorcontrib>Haight, R.</creatorcontrib><creatorcontrib>Srijanto, B.</creatorcontrib><creatorcontrib>Feldman, L.</creatorcontrib><creatorcontrib>Hijazi, H.</creatorcontrib><creatorcontrib>Zhu, X.</creatorcontrib><creatorcontrib>Hu, L.</creatorcontrib><creatorcontrib>Kim, M.</creatorcontrib><creatorcontrib>Sardashti, K.</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>AIP advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Langa, B.</au><au>Sapkota, D.</au><au>Lainez, I.</au><au>Haight, R.</au><au>Srijanto, B.</au><au>Feldman, L.</au><au>Hijazi, H.</au><au>Zhu, X.</au><au>Hu, L.</au><au>Kim, M.</au><au>Sardashti, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solid-state reactions at niobium–germanium interfaces in hybrid quantum electronics</atitle><jtitle>AIP advances</jtitle><date>2024-09-01</date><risdate>2024</risdate><volume>14</volume><issue>9</issue><spage>095311</spage><epage>095311-6</epage><pages>095311-095311-6</pages><issn>2158-3226</issn><eissn>2158-3226</eissn><coden>AAIDBI</coden><abstract>Hybrid superconductor–semiconductor materials systems are promising candidates for quantum computing applications. Their integration into superconducting electronics has enabled on-demand voltage tunability at millikelvin temperatures. Ge quantum wells have been among the semiconducting platforms interfaced with superconducting Al to realize voltage tunable Josephson junctions. Here, we explore Nb as a superconducting material in direct contact with Ge channels by focusing on the solid-state reactions at the Nb/Ge interfaces. We employ Nb evaporation at cryogenic temperatures (∼100 K) to establish a baseline structure with atomically and chemically abrupt Nb/Ge interfaces. By conducting systematic photoelectron spectroscopy and transport measurements on Nb/Ge samples across varying annealing temperatures, we elucidated the influence of Ge out-diffusion on the ultimate performance of superconducting electronics. This study underlines the need for low-temperature growth to minimize chemical intermixing and band bending at the Nb/Ge interfaces.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0221366</doi><tpages>6</tpages><orcidid>https://orcid.org/0009-0007-3816-2813</orcidid><orcidid>https://orcid.org/0000-0002-5781-1723</orcidid><orcidid>https://orcid.org/0009-0004-2214-1178</orcidid><orcidid>https://orcid.org/0000-0002-3397-8262</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2158-3226 |
ispartof | AIP advances, 2024-09, Vol.14 (9), p.095311-095311-6 |
issn | 2158-3226 2158-3226 |
language | eng |
recordid | cdi_crossref_primary_10_1063_5_0221366 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Free Full-Text Journals in Chemistry |
subjects | Cryogenic temperature Electric potential Electronics Germanium Josephson junctions Low temperature Niobium Photoelectrons Quantum computing Quantum electronics Quantum wells Semiconductor materials Solid state Superconductivity Voltage |
title | Solid-state reactions at niobium–germanium interfaces in hybrid quantum electronics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T08%3A06%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solid-state%20reactions%20at%20niobium%E2%80%93germanium%20interfaces%20in%20hybrid%20quantum%20electronics&rft.jtitle=AIP%20advances&rft.au=Langa,%20B.&rft.date=2024-09-01&rft.volume=14&rft.issue=9&rft.spage=095311&rft.epage=095311-6&rft.pages=095311-095311-6&rft.issn=2158-3226&rft.eissn=2158-3226&rft.coden=AAIDBI&rft_id=info:doi/10.1063/5.0221366&rft_dat=%3Cproquest_cross%3E3104168481%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3104168481&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_4b40861501e44631b355bfe6816e2bf3&rfr_iscdi=true |