Solid-state reactions at niobium–germanium interfaces in hybrid quantum electronics

Hybrid superconductor–semiconductor materials systems are promising candidates for quantum computing applications. Their integration into superconducting electronics has enabled on-demand voltage tunability at millikelvin temperatures. Ge quantum wells have been among the semiconducting platforms in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIP advances 2024-09, Vol.14 (9), p.095311-095311-6
Hauptverfasser: Langa, B., Sapkota, D., Lainez, I., Haight, R., Srijanto, B., Feldman, L., Hijazi, H., Zhu, X., Hu, L., Kim, M., Sardashti, K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 095311-6
container_issue 9
container_start_page 095311
container_title AIP advances
container_volume 14
creator Langa, B.
Sapkota, D.
Lainez, I.
Haight, R.
Srijanto, B.
Feldman, L.
Hijazi, H.
Zhu, X.
Hu, L.
Kim, M.
Sardashti, K.
description Hybrid superconductor–semiconductor materials systems are promising candidates for quantum computing applications. Their integration into superconducting electronics has enabled on-demand voltage tunability at millikelvin temperatures. Ge quantum wells have been among the semiconducting platforms interfaced with superconducting Al to realize voltage tunable Josephson junctions. Here, we explore Nb as a superconducting material in direct contact with Ge channels by focusing on the solid-state reactions at the Nb/Ge interfaces. We employ Nb evaporation at cryogenic temperatures (∼100 K) to establish a baseline structure with atomically and chemically abrupt Nb/Ge interfaces. By conducting systematic photoelectron spectroscopy and transport measurements on Nb/Ge samples across varying annealing temperatures, we elucidated the influence of Ge out-diffusion on the ultimate performance of superconducting electronics. This study underlines the need for low-temperature growth to minimize chemical intermixing and band bending at the Nb/Ge interfaces.
doi_str_mv 10.1063/5.0221366
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0221366</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_4b40861501e44631b355bfe6816e2bf3</doaj_id><sourcerecordid>3104168481</sourcerecordid><originalsourceid>FETCH-LOGICAL-c283t-ebda308189c6e7396e924837edd083eae59147eff0781edbfe78b67b63b9b3b83</originalsourceid><addsrcrecordid>eNp9kc9KAzEQxoMoWGoPvsGCJ4WtySabzR6l-KdQ8KA9hyQ7W1PaTZtkD735Dr6hT2J0i3hyLvMx8-ObYQahS4KnBHN6W05xURDK-QkaFaQUOS0KfvpHn6NJCGucgtUECzZCyxe3sU0eooqQeVAmWteFTMWss07bfvv5_rECv1Vd0pntIvhWGQhJZm8H7W2T7XvVxdSEDZjoXWdNuEBnrdoEmBzzGC0f7l9nT_ni-XE-u1vkphA05qAbRbEgojYcKlpzqAsmaAVNgwUFBWVNWAVtiytBoNEtVELzSnOqa021oGM0H3wbp9Zy5-1W-YN0ysqfgvMrqXy0ZgOSaYYFJyUmwBinRNOyTIZcEA6Fbmnyuhq8dt7tewhRrl3vu7S-pAQzwgUTJFHXA2W8C8FD-zuVYPn9BFnK4xMSezOwwdh033TYf-AvWrCHAg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3104168481</pqid></control><display><type>article</type><title>Solid-state reactions at niobium–germanium interfaces in hybrid quantum electronics</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Langa, B. ; Sapkota, D. ; Lainez, I. ; Haight, R. ; Srijanto, B. ; Feldman, L. ; Hijazi, H. ; Zhu, X. ; Hu, L. ; Kim, M. ; Sardashti, K.</creator><creatorcontrib>Langa, B. ; Sapkota, D. ; Lainez, I. ; Haight, R. ; Srijanto, B. ; Feldman, L. ; Hijazi, H. ; Zhu, X. ; Hu, L. ; Kim, M. ; Sardashti, K.</creatorcontrib><description>Hybrid superconductor–semiconductor materials systems are promising candidates for quantum computing applications. Their integration into superconducting electronics has enabled on-demand voltage tunability at millikelvin temperatures. Ge quantum wells have been among the semiconducting platforms interfaced with superconducting Al to realize voltage tunable Josephson junctions. Here, we explore Nb as a superconducting material in direct contact with Ge channels by focusing on the solid-state reactions at the Nb/Ge interfaces. We employ Nb evaporation at cryogenic temperatures (∼100 K) to establish a baseline structure with atomically and chemically abrupt Nb/Ge interfaces. By conducting systematic photoelectron spectroscopy and transport measurements on Nb/Ge samples across varying annealing temperatures, we elucidated the influence of Ge out-diffusion on the ultimate performance of superconducting electronics. This study underlines the need for low-temperature growth to minimize chemical intermixing and band bending at the Nb/Ge interfaces.</description><identifier>ISSN: 2158-3226</identifier><identifier>EISSN: 2158-3226</identifier><identifier>DOI: 10.1063/5.0221366</identifier><identifier>CODEN: AAIDBI</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Cryogenic temperature ; Electric potential ; Electronics ; Germanium ; Josephson junctions ; Low temperature ; Niobium ; Photoelectrons ; Quantum computing ; Quantum electronics ; Quantum wells ; Semiconductor materials ; Solid state ; Superconductivity ; Voltage</subject><ispartof>AIP advances, 2024-09, Vol.14 (9), p.095311-095311-6</ispartof><rights>Author(s)</rights><rights>2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c283t-ebda308189c6e7396e924837edd083eae59147eff0781edbfe78b67b63b9b3b83</cites><orcidid>0009-0007-3816-2813 ; 0000-0002-5781-1723 ; 0009-0004-2214-1178 ; 0000-0002-3397-8262</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,2096,27901,27902</link.rule.ids></links><search><creatorcontrib>Langa, B.</creatorcontrib><creatorcontrib>Sapkota, D.</creatorcontrib><creatorcontrib>Lainez, I.</creatorcontrib><creatorcontrib>Haight, R.</creatorcontrib><creatorcontrib>Srijanto, B.</creatorcontrib><creatorcontrib>Feldman, L.</creatorcontrib><creatorcontrib>Hijazi, H.</creatorcontrib><creatorcontrib>Zhu, X.</creatorcontrib><creatorcontrib>Hu, L.</creatorcontrib><creatorcontrib>Kim, M.</creatorcontrib><creatorcontrib>Sardashti, K.</creatorcontrib><title>Solid-state reactions at niobium–germanium interfaces in hybrid quantum electronics</title><title>AIP advances</title><description>Hybrid superconductor–semiconductor materials systems are promising candidates for quantum computing applications. Their integration into superconducting electronics has enabled on-demand voltage tunability at millikelvin temperatures. Ge quantum wells have been among the semiconducting platforms interfaced with superconducting Al to realize voltage tunable Josephson junctions. Here, we explore Nb as a superconducting material in direct contact with Ge channels by focusing on the solid-state reactions at the Nb/Ge interfaces. We employ Nb evaporation at cryogenic temperatures (∼100 K) to establish a baseline structure with atomically and chemically abrupt Nb/Ge interfaces. By conducting systematic photoelectron spectroscopy and transport measurements on Nb/Ge samples across varying annealing temperatures, we elucidated the influence of Ge out-diffusion on the ultimate performance of superconducting electronics. This study underlines the need for low-temperature growth to minimize chemical intermixing and band bending at the Nb/Ge interfaces.</description><subject>Cryogenic temperature</subject><subject>Electric potential</subject><subject>Electronics</subject><subject>Germanium</subject><subject>Josephson junctions</subject><subject>Low temperature</subject><subject>Niobium</subject><subject>Photoelectrons</subject><subject>Quantum computing</subject><subject>Quantum electronics</subject><subject>Quantum wells</subject><subject>Semiconductor materials</subject><subject>Solid state</subject><subject>Superconductivity</subject><subject>Voltage</subject><issn>2158-3226</issn><issn>2158-3226</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kc9KAzEQxoMoWGoPvsGCJ4WtySabzR6l-KdQ8KA9hyQ7W1PaTZtkD735Dr6hT2J0i3hyLvMx8-ObYQahS4KnBHN6W05xURDK-QkaFaQUOS0KfvpHn6NJCGucgtUECzZCyxe3sU0eooqQeVAmWteFTMWss07bfvv5_rECv1Vd0pntIvhWGQhJZm8H7W2T7XvVxdSEDZjoXWdNuEBnrdoEmBzzGC0f7l9nT_ni-XE-u1vkphA05qAbRbEgojYcKlpzqAsmaAVNgwUFBWVNWAVtiytBoNEtVELzSnOqa021oGM0H3wbp9Zy5-1W-YN0ysqfgvMrqXy0ZgOSaYYFJyUmwBinRNOyTIZcEA6Fbmnyuhq8dt7tewhRrl3vu7S-pAQzwgUTJFHXA2W8C8FD-zuVYPn9BFnK4xMSezOwwdh033TYf-AvWrCHAg</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Langa, B.</creator><creator>Sapkota, D.</creator><creator>Lainez, I.</creator><creator>Haight, R.</creator><creator>Srijanto, B.</creator><creator>Feldman, L.</creator><creator>Hijazi, H.</creator><creator>Zhu, X.</creator><creator>Hu, L.</creator><creator>Kim, M.</creator><creator>Sardashti, K.</creator><general>American Institute of Physics</general><general>AIP Publishing LLC</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0007-3816-2813</orcidid><orcidid>https://orcid.org/0000-0002-5781-1723</orcidid><orcidid>https://orcid.org/0009-0004-2214-1178</orcidid><orcidid>https://orcid.org/0000-0002-3397-8262</orcidid></search><sort><creationdate>20240901</creationdate><title>Solid-state reactions at niobium–germanium interfaces in hybrid quantum electronics</title><author>Langa, B. ; Sapkota, D. ; Lainez, I. ; Haight, R. ; Srijanto, B. ; Feldman, L. ; Hijazi, H. ; Zhu, X. ; Hu, L. ; Kim, M. ; Sardashti, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c283t-ebda308189c6e7396e924837edd083eae59147eff0781edbfe78b67b63b9b3b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cryogenic temperature</topic><topic>Electric potential</topic><topic>Electronics</topic><topic>Germanium</topic><topic>Josephson junctions</topic><topic>Low temperature</topic><topic>Niobium</topic><topic>Photoelectrons</topic><topic>Quantum computing</topic><topic>Quantum electronics</topic><topic>Quantum wells</topic><topic>Semiconductor materials</topic><topic>Solid state</topic><topic>Superconductivity</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Langa, B.</creatorcontrib><creatorcontrib>Sapkota, D.</creatorcontrib><creatorcontrib>Lainez, I.</creatorcontrib><creatorcontrib>Haight, R.</creatorcontrib><creatorcontrib>Srijanto, B.</creatorcontrib><creatorcontrib>Feldman, L.</creatorcontrib><creatorcontrib>Hijazi, H.</creatorcontrib><creatorcontrib>Zhu, X.</creatorcontrib><creatorcontrib>Hu, L.</creatorcontrib><creatorcontrib>Kim, M.</creatorcontrib><creatorcontrib>Sardashti, K.</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>AIP advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Langa, B.</au><au>Sapkota, D.</au><au>Lainez, I.</au><au>Haight, R.</au><au>Srijanto, B.</au><au>Feldman, L.</au><au>Hijazi, H.</au><au>Zhu, X.</au><au>Hu, L.</au><au>Kim, M.</au><au>Sardashti, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solid-state reactions at niobium–germanium interfaces in hybrid quantum electronics</atitle><jtitle>AIP advances</jtitle><date>2024-09-01</date><risdate>2024</risdate><volume>14</volume><issue>9</issue><spage>095311</spage><epage>095311-6</epage><pages>095311-095311-6</pages><issn>2158-3226</issn><eissn>2158-3226</eissn><coden>AAIDBI</coden><abstract>Hybrid superconductor–semiconductor materials systems are promising candidates for quantum computing applications. Their integration into superconducting electronics has enabled on-demand voltage tunability at millikelvin temperatures. Ge quantum wells have been among the semiconducting platforms interfaced with superconducting Al to realize voltage tunable Josephson junctions. Here, we explore Nb as a superconducting material in direct contact with Ge channels by focusing on the solid-state reactions at the Nb/Ge interfaces. We employ Nb evaporation at cryogenic temperatures (∼100 K) to establish a baseline structure with atomically and chemically abrupt Nb/Ge interfaces. By conducting systematic photoelectron spectroscopy and transport measurements on Nb/Ge samples across varying annealing temperatures, we elucidated the influence of Ge out-diffusion on the ultimate performance of superconducting electronics. This study underlines the need for low-temperature growth to minimize chemical intermixing and band bending at the Nb/Ge interfaces.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0221366</doi><tpages>6</tpages><orcidid>https://orcid.org/0009-0007-3816-2813</orcidid><orcidid>https://orcid.org/0000-0002-5781-1723</orcidid><orcidid>https://orcid.org/0009-0004-2214-1178</orcidid><orcidid>https://orcid.org/0000-0002-3397-8262</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2158-3226
ispartof AIP advances, 2024-09, Vol.14 (9), p.095311-095311-6
issn 2158-3226
2158-3226
language eng
recordid cdi_crossref_primary_10_1063_5_0221366
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Free Full-Text Journals in Chemistry
subjects Cryogenic temperature
Electric potential
Electronics
Germanium
Josephson junctions
Low temperature
Niobium
Photoelectrons
Quantum computing
Quantum electronics
Quantum wells
Semiconductor materials
Solid state
Superconductivity
Voltage
title Solid-state reactions at niobium–germanium interfaces in hybrid quantum electronics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T08%3A06%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solid-state%20reactions%20at%20niobium%E2%80%93germanium%20interfaces%20in%20hybrid%20quantum%20electronics&rft.jtitle=AIP%20advances&rft.au=Langa,%20B.&rft.date=2024-09-01&rft.volume=14&rft.issue=9&rft.spage=095311&rft.epage=095311-6&rft.pages=095311-095311-6&rft.issn=2158-3226&rft.eissn=2158-3226&rft.coden=AAIDBI&rft_id=info:doi/10.1063/5.0221366&rft_dat=%3Cproquest_cross%3E3104168481%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3104168481&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_4b40861501e44631b355bfe6816e2bf3&rfr_iscdi=true