Solid-state reactions at niobium–germanium interfaces in hybrid quantum electronics

Hybrid superconductor–semiconductor materials systems are promising candidates for quantum computing applications. Their integration into superconducting electronics has enabled on-demand voltage tunability at millikelvin temperatures. Ge quantum wells have been among the semiconducting platforms in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIP advances 2024-09, Vol.14 (9), p.095311-095311-6
Hauptverfasser: Langa, B., Sapkota, D., Lainez, I., Haight, R., Srijanto, B., Feldman, L., Hijazi, H., Zhu, X., Hu, L., Kim, M., Sardashti, K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hybrid superconductor–semiconductor materials systems are promising candidates for quantum computing applications. Their integration into superconducting electronics has enabled on-demand voltage tunability at millikelvin temperatures. Ge quantum wells have been among the semiconducting platforms interfaced with superconducting Al to realize voltage tunable Josephson junctions. Here, we explore Nb as a superconducting material in direct contact with Ge channels by focusing on the solid-state reactions at the Nb/Ge interfaces. We employ Nb evaporation at cryogenic temperatures (∼100 K) to establish a baseline structure with atomically and chemically abrupt Nb/Ge interfaces. By conducting systematic photoelectron spectroscopy and transport measurements on Nb/Ge samples across varying annealing temperatures, we elucidated the influence of Ge out-diffusion on the ultimate performance of superconducting electronics. This study underlines the need for low-temperature growth to minimize chemical intermixing and band bending at the Nb/Ge interfaces.
ISSN:2158-3226
2158-3226
DOI:10.1063/5.0221366