Exciton energy transfer inside cavity—A benchmark study of polaritonic dynamics using the surface hopping method
Strong coupling between the molecular system and photon inside the cavity generates polaritons, which can alter reaction rates by orders of magnitude. In this work, we benchmark the surface hopping method to simulate non-adiabatic dynamics in a cavity. The comparison is made against a numerically ex...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2024-08, Vol.161 (5) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Strong coupling between the molecular system and photon inside the cavity generates polaritons, which can alter reaction rates by orders of magnitude. In this work, we benchmark the surface hopping method to simulate non-adiabatic dynamics in a cavity. The comparison is made against a numerically exact method (the hierarchical equations of motion) for a model system investigating excitonic energy transfer for a broad range of parameters. Surface hopping captures the effects of the radiation mode well, both at resonance and off-resonance. We have further investigated parameters that can increase or decrease the rate of population transfer, and we find that surface hopping in general can capture both effects well. Finally, we show that the dipole self-energy term within our parameter regime does not significantly affect the system’s dynamics. |
---|---|
ISSN: | 0021-9606 1089-7690 1089-7690 |
DOI: | 10.1063/5.0216787 |