Direct numerical simulations of pure and partially cracked ammonia/air turbulent premixed jet flames
Ammonia has been identified as a promising fuel to diminish greenhouse gas emission. However, ammonia combustion presents certain challenges including low reactivity and high NO emission. In the present study, three-dimensional direct numerical simulations (DNS) of ammonia/air premixed slot jet flam...
Gespeichert in:
Veröffentlicht in: | Physics of fluids (1994) 2024-07, Vol.36 (7) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Ammonia has been identified as a promising fuel to diminish greenhouse gas emission. However, ammonia combustion presents certain challenges including low reactivity and high NO emission. In the present study, three-dimensional direct numerical simulations (DNS) of ammonia/air premixed slot jet flames with varying Karlovitz numbers (Ka) and cracking ratios were performed. Three cases were considered, including two pure ammonia/air flames with different turbulence intensities and one partially cracked ammonia/air flame with high turbulence intensity. The effects of turbulence intensity and partial ammonia cracking on turbulence–flame interactions and NO emission characteristics of the flames were investigated. It was shown that the turbulent flame speed is higher for the flames with high turbulence intensity. In general, the flame displacement speed is negatively correlated with curvature in negative curvature regions, while the correlation is weak in the positive curvature regions for highly turbulent flames. Most flame area is consumed in negatively curved regions and produced in positively curved regions. It was found that the NO mass fraction is higher in the flame with partial ammonia cracking compared to the pure ammonia/air flames. The NO pathway analysis shows that the NH
→ NO pathway is enhanced, while the NO consumption pathway is suppressed in the partially cracked ammonia/air flame. The NO mass fraction is higher in regions of negative curvature than positive curvature. Interestingly, the NO mass fraction is found to be negatively correlated with the local equivalence ratio, which is consistent in both the DNS and the corresponding laminar premixed flames. |
---|---|
ISSN: | 1070-6631 1089-7666 |
DOI: | 10.1063/5.0215258 |