Alternative CNDOL Fockians for fast and accurate description of molecular exciton properties

CNDOL is an a priori, approximate Fockian for molecular wave functions. In this study, we employ several modes of singly excited configuration interaction (CIS) to model molecular excitation properties by using four combinations of the one electron operator terms. Those options are compared to the e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2024-06, Vol.160 (21)
Hauptverfasser: Montero-Cabrera, Luis A., Montero-Alejo, Ana L., Aspuru-Guzik, Alan, García de la Vega, José M., Piris, Mario, Díaz-Fernández, Lourdes A., Pérez-Badell, Yoana, Guerra-Barroso, Alberto, Alfonso-Ramos, Javier E., Rodríguez, Javier, Fuentes, María E., de Armas, Carlos M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 21
container_start_page
container_title The Journal of chemical physics
container_volume 160
creator Montero-Cabrera, Luis A.
Montero-Alejo, Ana L.
Aspuru-Guzik, Alan
García de la Vega, José M.
Piris, Mario
Díaz-Fernández, Lourdes A.
Pérez-Badell, Yoana
Guerra-Barroso, Alberto
Alfonso-Ramos, Javier E.
Rodríguez, Javier
Fuentes, María E.
de Armas, Carlos M.
description CNDOL is an a priori, approximate Fockian for molecular wave functions. In this study, we employ several modes of singly excited configuration interaction (CIS) to model molecular excitation properties by using four combinations of the one electron operator terms. Those options are compared to the experimental and theoretical data for a carefully selected set of molecules. The resulting excitons are represented by CIS wave functions that encompass all valence electrons in the system for each excited state energy. The Coulomb–exchange term associated to the calculated excitation energies is rationalized to evaluate theoretical exciton binding energies. This property is shown to be useful for discriminating the charge donation ability of molecular and supermolecular systems. Multielectronic 3D maps of exciton formal charges are showcased, demonstrating the applicability of these approximate wave functions for modeling properties of large molecules and clusters at nanoscales. This modeling proves useful in designing molecular photovoltaic devices. Our methodology holds potential applications in systematic evaluations of such systems and the development of fundamental artificial intelligence databases for predicting related properties.
doi_str_mv 10.1063/5.0208809
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0208809</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3064141585</sourcerecordid><originalsourceid>FETCH-LOGICAL-c238t-11a8e79f5b104137ee28bddd51fce61f85fabd7e456d766667f48044b0d07ffb3</originalsourceid><addsrcrecordid>eNp90E1LxDAQBuAgiq4fB_-ABLyoUJ20aZMeZf2ERS96E0qaTKDabdYkFf33Rnf14MFcBsLDO8xLyD6DUwZVcVaeQg5SQr1GJgxknYmqhnUyAchZVldQbZHtEJ4BgImcb5KtQspcSpZPyNN5H9EPKnZvSKd3F_czeuX0S6eGQK3z1KoQqRoMVVqPXkWkBoP23SJ2bqDO0rnrUY-98hTfdRfT58K7BfrYYdglG1b1AfdWc4c8Xl0-TG-y2f317fR8lum8kDFjTEkUtS1bBpwVAjGXrTGmZFZjxawsrWqNQF5WRlTpCcslcN6CAWFtW-yQo2VuWv06YojNvAsa-14N6MbQFFBxxlkpy0QP_9BnN6b7-29VyFwIwZM6XirtXQgebbPw3Vz5j4ZB81V5UzarypM9WCWO7RzNr_zpOIGTJQipH_XV2z9pn6W0iFQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3063827774</pqid></control><display><type>article</type><title>Alternative CNDOL Fockians for fast and accurate description of molecular exciton properties</title><source>AIP Journals Complete</source><creator>Montero-Cabrera, Luis A. ; Montero-Alejo, Ana L. ; Aspuru-Guzik, Alan ; García de la Vega, José M. ; Piris, Mario ; Díaz-Fernández, Lourdes A. ; Pérez-Badell, Yoana ; Guerra-Barroso, Alberto ; Alfonso-Ramos, Javier E. ; Rodríguez, Javier ; Fuentes, María E. ; de Armas, Carlos M.</creator><creatorcontrib>Montero-Cabrera, Luis A. ; Montero-Alejo, Ana L. ; Aspuru-Guzik, Alan ; García de la Vega, José M. ; Piris, Mario ; Díaz-Fernández, Lourdes A. ; Pérez-Badell, Yoana ; Guerra-Barroso, Alberto ; Alfonso-Ramos, Javier E. ; Rodríguez, Javier ; Fuentes, María E. ; de Armas, Carlos M.</creatorcontrib><description>CNDOL is an a priori, approximate Fockian for molecular wave functions. In this study, we employ several modes of singly excited configuration interaction (CIS) to model molecular excitation properties by using four combinations of the one electron operator terms. Those options are compared to the experimental and theoretical data for a carefully selected set of molecules. The resulting excitons are represented by CIS wave functions that encompass all valence electrons in the system for each excited state energy. The Coulomb–exchange term associated to the calculated excitation energies is rationalized to evaluate theoretical exciton binding energies. This property is shown to be useful for discriminating the charge donation ability of molecular and supermolecular systems. Multielectronic 3D maps of exciton formal charges are showcased, demonstrating the applicability of these approximate wave functions for modeling properties of large molecules and clusters at nanoscales. This modeling proves useful in designing molecular photovoltaic devices. Our methodology holds potential applications in systematic evaluations of such systems and the development of fundamental artificial intelligence databases for predicting related properties.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0208809</identifier><identifier>PMID: 38828812</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Artificial intelligence ; Configuration interaction ; Electrons ; Excitons ; Modelling ; Molecular excitation ; Photovoltaic cells ; Wave functions</subject><ispartof>The Journal of chemical physics, 2024-06, Vol.160 (21)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c238t-11a8e79f5b104137ee28bddd51fce61f85fabd7e456d766667f48044b0d07ffb3</cites><orcidid>0000-0002-3388-8224 ; 0000-0002-4128-1203 ; 0000-0002-8277-4434 ; 0000-0003-1675-0546 ; 0000-0003-0222-2953 ; 0000-0002-1940-422X ; 0000-0001-9588-0984 ; 0000-0001-6616-8920</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0208809$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,777,781,791,4498,27905,27906,76133</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38828812$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Montero-Cabrera, Luis A.</creatorcontrib><creatorcontrib>Montero-Alejo, Ana L.</creatorcontrib><creatorcontrib>Aspuru-Guzik, Alan</creatorcontrib><creatorcontrib>García de la Vega, José M.</creatorcontrib><creatorcontrib>Piris, Mario</creatorcontrib><creatorcontrib>Díaz-Fernández, Lourdes A.</creatorcontrib><creatorcontrib>Pérez-Badell, Yoana</creatorcontrib><creatorcontrib>Guerra-Barroso, Alberto</creatorcontrib><creatorcontrib>Alfonso-Ramos, Javier E.</creatorcontrib><creatorcontrib>Rodríguez, Javier</creatorcontrib><creatorcontrib>Fuentes, María E.</creatorcontrib><creatorcontrib>de Armas, Carlos M.</creatorcontrib><title>Alternative CNDOL Fockians for fast and accurate description of molecular exciton properties</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>CNDOL is an a priori, approximate Fockian for molecular wave functions. In this study, we employ several modes of singly excited configuration interaction (CIS) to model molecular excitation properties by using four combinations of the one electron operator terms. Those options are compared to the experimental and theoretical data for a carefully selected set of molecules. The resulting excitons are represented by CIS wave functions that encompass all valence electrons in the system for each excited state energy. The Coulomb–exchange term associated to the calculated excitation energies is rationalized to evaluate theoretical exciton binding energies. This property is shown to be useful for discriminating the charge donation ability of molecular and supermolecular systems. Multielectronic 3D maps of exciton formal charges are showcased, demonstrating the applicability of these approximate wave functions for modeling properties of large molecules and clusters at nanoscales. This modeling proves useful in designing molecular photovoltaic devices. Our methodology holds potential applications in systematic evaluations of such systems and the development of fundamental artificial intelligence databases for predicting related properties.</description><subject>Artificial intelligence</subject><subject>Configuration interaction</subject><subject>Electrons</subject><subject>Excitons</subject><subject>Modelling</subject><subject>Molecular excitation</subject><subject>Photovoltaic cells</subject><subject>Wave functions</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp90E1LxDAQBuAgiq4fB_-ABLyoUJ20aZMeZf2ERS96E0qaTKDabdYkFf33Rnf14MFcBsLDO8xLyD6DUwZVcVaeQg5SQr1GJgxknYmqhnUyAchZVldQbZHtEJ4BgImcb5KtQspcSpZPyNN5H9EPKnZvSKd3F_czeuX0S6eGQK3z1KoQqRoMVVqPXkWkBoP23SJ2bqDO0rnrUY-98hTfdRfT58K7BfrYYdglG1b1AfdWc4c8Xl0-TG-y2f317fR8lum8kDFjTEkUtS1bBpwVAjGXrTGmZFZjxawsrWqNQF5WRlTpCcslcN6CAWFtW-yQo2VuWv06YojNvAsa-14N6MbQFFBxxlkpy0QP_9BnN6b7-29VyFwIwZM6XirtXQgebbPw3Vz5j4ZB81V5UzarypM9WCWO7RzNr_zpOIGTJQipH_XV2z9pn6W0iFQ</recordid><startdate>20240607</startdate><enddate>20240607</enddate><creator>Montero-Cabrera, Luis A.</creator><creator>Montero-Alejo, Ana L.</creator><creator>Aspuru-Guzik, Alan</creator><creator>García de la Vega, José M.</creator><creator>Piris, Mario</creator><creator>Díaz-Fernández, Lourdes A.</creator><creator>Pérez-Badell, Yoana</creator><creator>Guerra-Barroso, Alberto</creator><creator>Alfonso-Ramos, Javier E.</creator><creator>Rodríguez, Javier</creator><creator>Fuentes, María E.</creator><creator>de Armas, Carlos M.</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3388-8224</orcidid><orcidid>https://orcid.org/0000-0002-4128-1203</orcidid><orcidid>https://orcid.org/0000-0002-8277-4434</orcidid><orcidid>https://orcid.org/0000-0003-1675-0546</orcidid><orcidid>https://orcid.org/0000-0003-0222-2953</orcidid><orcidid>https://orcid.org/0000-0002-1940-422X</orcidid><orcidid>https://orcid.org/0000-0001-9588-0984</orcidid><orcidid>https://orcid.org/0000-0001-6616-8920</orcidid></search><sort><creationdate>20240607</creationdate><title>Alternative CNDOL Fockians for fast and accurate description of molecular exciton properties</title><author>Montero-Cabrera, Luis A. ; Montero-Alejo, Ana L. ; Aspuru-Guzik, Alan ; García de la Vega, José M. ; Piris, Mario ; Díaz-Fernández, Lourdes A. ; Pérez-Badell, Yoana ; Guerra-Barroso, Alberto ; Alfonso-Ramos, Javier E. ; Rodríguez, Javier ; Fuentes, María E. ; de Armas, Carlos M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c238t-11a8e79f5b104137ee28bddd51fce61f85fabd7e456d766667f48044b0d07ffb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial intelligence</topic><topic>Configuration interaction</topic><topic>Electrons</topic><topic>Excitons</topic><topic>Modelling</topic><topic>Molecular excitation</topic><topic>Photovoltaic cells</topic><topic>Wave functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Montero-Cabrera, Luis A.</creatorcontrib><creatorcontrib>Montero-Alejo, Ana L.</creatorcontrib><creatorcontrib>Aspuru-Guzik, Alan</creatorcontrib><creatorcontrib>García de la Vega, José M.</creatorcontrib><creatorcontrib>Piris, Mario</creatorcontrib><creatorcontrib>Díaz-Fernández, Lourdes A.</creatorcontrib><creatorcontrib>Pérez-Badell, Yoana</creatorcontrib><creatorcontrib>Guerra-Barroso, Alberto</creatorcontrib><creatorcontrib>Alfonso-Ramos, Javier E.</creatorcontrib><creatorcontrib>Rodríguez, Javier</creatorcontrib><creatorcontrib>Fuentes, María E.</creatorcontrib><creatorcontrib>de Armas, Carlos M.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Montero-Cabrera, Luis A.</au><au>Montero-Alejo, Ana L.</au><au>Aspuru-Guzik, Alan</au><au>García de la Vega, José M.</au><au>Piris, Mario</au><au>Díaz-Fernández, Lourdes A.</au><au>Pérez-Badell, Yoana</au><au>Guerra-Barroso, Alberto</au><au>Alfonso-Ramos, Javier E.</au><au>Rodríguez, Javier</au><au>Fuentes, María E.</au><au>de Armas, Carlos M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Alternative CNDOL Fockians for fast and accurate description of molecular exciton properties</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2024-06-07</date><risdate>2024</risdate><volume>160</volume><issue>21</issue><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>CNDOL is an a priori, approximate Fockian for molecular wave functions. In this study, we employ several modes of singly excited configuration interaction (CIS) to model molecular excitation properties by using four combinations of the one electron operator terms. Those options are compared to the experimental and theoretical data for a carefully selected set of molecules. The resulting excitons are represented by CIS wave functions that encompass all valence electrons in the system for each excited state energy. The Coulomb–exchange term associated to the calculated excitation energies is rationalized to evaluate theoretical exciton binding energies. This property is shown to be useful for discriminating the charge donation ability of molecular and supermolecular systems. Multielectronic 3D maps of exciton formal charges are showcased, demonstrating the applicability of these approximate wave functions for modeling properties of large molecules and clusters at nanoscales. This modeling proves useful in designing molecular photovoltaic devices. Our methodology holds potential applications in systematic evaluations of such systems and the development of fundamental artificial intelligence databases for predicting related properties.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>38828812</pmid><doi>10.1063/5.0208809</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-3388-8224</orcidid><orcidid>https://orcid.org/0000-0002-4128-1203</orcidid><orcidid>https://orcid.org/0000-0002-8277-4434</orcidid><orcidid>https://orcid.org/0000-0003-1675-0546</orcidid><orcidid>https://orcid.org/0000-0003-0222-2953</orcidid><orcidid>https://orcid.org/0000-0002-1940-422X</orcidid><orcidid>https://orcid.org/0000-0001-9588-0984</orcidid><orcidid>https://orcid.org/0000-0001-6616-8920</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2024-06, Vol.160 (21)
issn 0021-9606
1089-7690
language eng
recordid cdi_crossref_primary_10_1063_5_0208809
source AIP Journals Complete
subjects Artificial intelligence
Configuration interaction
Electrons
Excitons
Modelling
Molecular excitation
Photovoltaic cells
Wave functions
title Alternative CNDOL Fockians for fast and accurate description of molecular exciton properties
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T01%3A48%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Alternative%20CNDOL%20Fockians%20for%20fast%20and%20accurate%20description%20of%20molecular%20exciton%20properties&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Montero-Cabrera,%20Luis%20A.&rft.date=2024-06-07&rft.volume=160&rft.issue=21&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0208809&rft_dat=%3Cproquest_cross%3E3064141585%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3063827774&rft_id=info:pmid/38828812&rfr_iscdi=true