Alternative CNDOL Fockians for fast and accurate description of molecular exciton properties

CNDOL is an a priori, approximate Fockian for molecular wave functions. In this study, we employ several modes of singly excited configuration interaction (CIS) to model molecular excitation properties by using four combinations of the one electron operator terms. Those options are compared to the e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2024-06, Vol.160 (21)
Hauptverfasser: Montero-Cabrera, Luis A., Montero-Alejo, Ana L., Aspuru-Guzik, Alan, García de la Vega, José M., Piris, Mario, Díaz-Fernández, Lourdes A., Pérez-Badell, Yoana, Guerra-Barroso, Alberto, Alfonso-Ramos, Javier E., Rodríguez, Javier, Fuentes, María E., de Armas, Carlos M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:CNDOL is an a priori, approximate Fockian for molecular wave functions. In this study, we employ several modes of singly excited configuration interaction (CIS) to model molecular excitation properties by using four combinations of the one electron operator terms. Those options are compared to the experimental and theoretical data for a carefully selected set of molecules. The resulting excitons are represented by CIS wave functions that encompass all valence electrons in the system for each excited state energy. The Coulomb–exchange term associated to the calculated excitation energies is rationalized to evaluate theoretical exciton binding energies. This property is shown to be useful for discriminating the charge donation ability of molecular and supermolecular systems. Multielectronic 3D maps of exciton formal charges are showcased, demonstrating the applicability of these approximate wave functions for modeling properties of large molecules and clusters at nanoscales. This modeling proves useful in designing molecular photovoltaic devices. Our methodology holds potential applications in systematic evaluations of such systems and the development of fundamental artificial intelligence databases for predicting related properties.
ISSN:0021-9606
1089-7690
DOI:10.1063/5.0208809