An optimized convolutional neural network architecture for lung cancer detection

Lung cancer, the treacherous malignancy affecting the respiratory system of a human body, has a devastating impact on the health and well-being of an individual. Due to the lack of automated and noninvasive diagnostic tools, healthcare professionals look forward toward biopsy as a gold standard for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:APL bioengineering 2024-06, Vol.8 (2), p.026121-026121-13
Hauptverfasser: Pathan, Sameena, Ali, Tanweer, P G, Sudheesh, P, Vasanth Kumar, Rao, Divya
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Lung cancer, the treacherous malignancy affecting the respiratory system of a human body, has a devastating impact on the health and well-being of an individual. Due to the lack of automated and noninvasive diagnostic tools, healthcare professionals look forward toward biopsy as a gold standard for diagnosis. However, biopsy could be traumatizing and expensive process. Additionally, the limited availability of dataset and inaccuracy in diagnosis is a major drawback experienced by researchers. The objective of the proposed research is to develop an automated diagnostic tool for screening of lung cancer using optimized hyperparameters such that convolutional neural network (CNN) model generalizes well for universally obtained computerized tomography (CT) slices of lung pathologies. The aforementioned objective is achieved in the following ways: (i) Initially, a preprocessing methodology specific to lung CT scans is formulated to avoid the loss of information due to random image smoothing, and (ii) a sine cosine algorithm optimization algorithm (SCA) is integrated in the CNN model, to optimally select the tuning parameters of CNN. The error rate is used as an objective function, and the SCA algorithm tries to minimize. The proposed method successfully achieved an average classification accuracy of 99% in classification of lung scans in normal, benign, and malignant classes. Further, the generalization ability of the proposed model is tested on unseen dataset, thereby achieving promising results. The quantitative results prove the efficacy of the system to be used by radiologists in a clinical scenario.
ISSN:2473-2877
2473-2877
DOI:10.1063/5.0208520