A novel nanocomposite of MXene/cadmium azide with high detonation performance

A novel MXene/cadmium azide nanocomposite with a low input energy and high output power is designed by self-assembly of Cd ions on the MXene layers and subsequent in situ azidation in a solution reaction. The research result shows that cadmium azide nanoparticles with a uniform size of ∼50 nm are we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIP advances 2024-03, Vol.14 (3), p.035218-035218-6
Hauptverfasser: Zhang, Lei, Cai, Junjie, Wei, Chunqiang, Xie, Mingwei, Peng, Yue, Yuan, Xiaoxia, Ma, Hongliang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A novel MXene/cadmium azide nanocomposite with a low input energy and high output power is designed by self-assembly of Cd ions on the MXene layers and subsequent in situ azidation in a solution reaction. The research result shows that cadmium azide nanoparticles with a uniform size of ∼50 nm are well dispersed on the MXene nanosheet’s surface, which is benefited from the rich functional groups on the MXene surface that can effectively immobilize and prevent the aggregation of the nanoparticles through electrostatic interaction. The thermal decomposition temperature (378.42 °C) and crystal structure of cadmium azide show no noticeable change after hybridizing with the MXene; more positively, the required input energy of the MXene/cadmium azide nanocomposite is significantly reduced, which is verified by its electric initiation input voltage of just 4.65 V. In addition, detonation can be realized by loading a less amount of the MXene/cadmium azide nanocomposite. These results demonstrate that the MXene/cadmium azide nanocomposite has the potential to be used as detonators in high-temperature environments.
ISSN:2158-3226
2158-3226
DOI:10.1063/5.0195608