A hybrid proper orthogonal decomposition and next generation reservoir computing approach for high-dimensional chaotic prediction: Application to flow-induced vibration of tube bundles

Chaotic time series prediction is a central science problem in diverse areas, ranging from engineering, economy to nature. Classical chaotic prediction techniques are limited to short-term prediction of low- or moderate-dimensional systems. Chaotic prediction of high-dimensional engineering problems...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chaos (Woodbury, N.Y.) N.Y.), 2024-03, Vol.34 (3)
Hauptverfasser: Liu, Tongwei, Zhao, Xielin, Sun, Pan, Zhou, Jinxiong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Chaotic time series prediction is a central science problem in diverse areas, ranging from engineering, economy to nature. Classical chaotic prediction techniques are limited to short-term prediction of low- or moderate-dimensional systems. Chaotic prediction of high-dimensional engineering problems is notoriously challenging. Here, we report a hybrid approach by combining proper orthogonal decomposition (POD) with the recently developed next generation reservoir computing (NGRC) for the chaotic forecasting of high-dimensional systems. The hybrid approach integrates the synergistic features of the POD for model reduction and the high efficiency of NGRC for temporal data analysis, resulting in a new paradigm on data-driven chaotic prediction. We perform the first chaotic prediction of the nonlinear flow-induced vibration (FIV) of loosely supported tube bundles in crossflow. Reducing the FIV of a continuous beam into a 3-degree-of-freedom system using POD modes and training the three time coefficients via a NGRC network with three layers, the hybrid approach can predict time series of a weakly chaotic system with root mean square prediction error less than 1% to 19.3 Lyapunov time, while a three Lyapunov time prediction is still achieved for a highly chaotic system. A comparative study demonstrates that the POD-NGRC outperforms the other existing methods in terms of either predictability or efficiency. The efforts open a new avenue for the chaotic prediction of high-dimensional nonlinear dynamic systems.
ISSN:1054-1500
1089-7682
DOI:10.1063/5.0191901