Re-evaluating the methane adsorption behavior in shale kerogen: Unifying experiment and molecular simulation
The methane adsorption capacity is crucial for evaluating gas-in-place resources and the gas production potential in shale gas reservoirs. There are many reports concerning the interfacial interaction between methane fluid and rock using various thermodynamic models; however, little research has bee...
Gespeichert in:
Veröffentlicht in: | Physics of fluids (1994) 2024-02, Vol.36 (2) |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The methane adsorption capacity is crucial for evaluating gas-in-place resources and the gas production potential in shale gas reservoirs. There are many reports concerning the interfacial interaction between methane fluid and rock using various thermodynamic models; however, little research has been performed to reveal how methane is adsorbed into nanopores with different scales. In this study, we did methane adsorption experiments on nine Longmaxi Formation shale kerogen. Then, molecular simulation and an improved Ono–Kondo model were used to analyze the methane adsorption behaviors. Results show that methane is preferentially adsorbed in sulfur-containing sites by surface adsorption and pore-filling adsorption, and methane adsorbed in the form of pore-filling contributes dominantly to the total methane adsorption amount. Surface adsorption capacity nS increases with increasing mesopore volume, while pore-filling adsorption capacity nF is affected by both micropore ( |
---|---|
ISSN: | 1070-6631 1089-7666 |
DOI: | 10.1063/5.0188365 |