Improved phosphorus doping in ZnTe by molecular beam epitaxy under alternating source supply

Phosphorus (P) doping in ZnTe grown by molecular beam epitaxy (MBE) under alternating source supply method was investigated to achieve p-type P-doped ZnTe (ZnTe:P) thin films using InP as a P dopant source, and the result was compared with those grown under a simultaneous MBE growth where the source...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2023-11, Vol.134 (19)
Hauptverfasser: Mustofa, Muhamad, Saito, Katsuhiko, Guo, Qixin, Tanaka, Tooru
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Phosphorus (P) doping in ZnTe grown by molecular beam epitaxy (MBE) under alternating source supply method was investigated to achieve p-type P-doped ZnTe (ZnTe:P) thin films using InP as a P dopant source, and the result was compared with those grown under a simultaneous MBE growth where the source beams were supplied simultaneously. As a result, P concentration in ZnTe thin films was found to increase with increasing the InP flux, and high P concentration up to 6.6 × 1019 cm−3 was confirmed by secondary ion mass spectroscopy (SIMS) analyses. However, In incorporation was also observed in the ZnTe:P thin films, despite that the detected In concentration by SIMS was more than one order of magnitude lower than the P concentration and almost two order of magnitude lower than those grown by the simultaneous MBE. Photoluminescence measurement of ZnTe:P thin film grown under alternating source supply showed a P-related acceptor bound exciton (Ia) peak at 2.37 eV, and the intensity of Ia emission increased after the annealing treatment, indicating the activation of P acceptor. The annealing also decreases the resistivity of the film. The results clearly indicate that the alternating source supply growth is effective to obtain ZnTe:P thin films with better P doping properties.
ISSN:0021-8979
1089-7550
DOI:10.1063/5.0178803