A bidirectional fifth-order partial differential equation: Lax representation and soliton solutions

In this paper, we study the bidirectional fifth-order partial differential equation uttt−uxxxxt−4(uxut)xx−4(uxuxt)x=0, which was proposed as a new integrable equation by Wazwaz [Phys. Scr. 83, 015012 (2011)]. By means of the prolongation structure method of Wahlquist and Estabrook [J. Math. Phys. 16...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2024-10, Vol.65 (10)
Hauptverfasser: Zang, Liming, Yao, Lei, Liu, Q. P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we study the bidirectional fifth-order partial differential equation uttt−uxxxxt−4(uxut)xx−4(uxuxt)x=0, which was proposed as a new integrable equation by Wazwaz [Phys. Scr. 83, 015012 (2011)]. By means of the prolongation structure method of Wahlquist and Estabrook [J. Math. Phys. 16, 1–7 (1975)], we construct a Lax representation for this equation. This enables us to confirm its integrability and identify it as the potential second-order flow in a Gelfand-Dickey hierarchy. We also use the Darboux transformation and present the multi-soliton solutions in the Wronskian form. Finally, we comment on a more general bidirectional partial differential equation.
ISSN:0022-2488
1089-7658
DOI:10.1063/5.0174451