Temperature dependent behavior of a kA-class superconducting flux pump with a continuous cylindrical stator

A high temperature superconducting (HTS) dynamo is a type of device known as a “flux pump” that can inject DC into a closed superconducting circuit. Here, we report experimental results from a variable-temperature dynamo-type HTS flux pump operated within a cryo-cooled chamber. This device employs a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2023-11, Vol.123 (20)
Hauptverfasser: Venuturumilli, S., Francis, A. C., Pantoja, A. E., Taylor, R. W., Brooks, J. M., Moseley, D. A., Badcock, R. A., Bumby, C. W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 20
container_start_page
container_title Applied physics letters
container_volume 123
creator Venuturumilli, S.
Francis, A. C.
Pantoja, A. E.
Taylor, R. W.
Brooks, J. M.
Moseley, D. A.
Badcock, R. A.
Bumby, C. W.
description A high temperature superconducting (HTS) dynamo is a type of device known as a “flux pump” that can inject DC into a closed superconducting circuit. Here, we report experimental results from a variable-temperature dynamo-type HTS flux pump operated within a cryo-cooled chamber. This device employs a “continuous stator” topology, whereby an HTS “coated conductor” is wrapped to form a cylinder around a mechanical rotor such that applied flux from the rotor magnet must always penetrate the stator. This leads to a high current device that can inject >1 kA into a series-connected HTS coil at 53 K. The open-circuit DC output voltage (Voc) from this HTS dynamo has been studied at stator temperatures between 35 and 95 K and attained a maxima at a temperature ∼5 K lower than the stator Tc. At lower temperatures, Voc decreases and falls to zero below ∼40 K. This non-intuitive effect is found to be due to flux-screening by critical currents flowing with the HTS stator, which increase with decreasing temperature. These shielding currents prevent flux from penetrating the HTS stator and, hence, reduce the magnitude of locally induced emf (and thus DC output) within the HTS film. A key implication of these results is that all magnetically driven HTS flux pumps should be operated at temperatures well above their flux-screening point, and this consideration must be taken into account for future designs of multi-kA class HTS flux pumps.
doi_str_mv 10.1063/5.0169553
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0169553</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2891009360</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-1af130d5bd47793f7a0962af6b03278f6f76b4690a95cc9009035ad9cd3611913</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKsH_0HAk8LWSdNkm2MpfkHBSz0v2XzYtNvNmg-1_95IPXsahueZGeZF6JrAhACn92wChAvG6AkaEajrihIyP0UjAKBVAeQcXcS4LS2bUjpCu7XZDybIlIPB2gym16ZPuDUb-el8wN5iiXeLSnUyRhxzcZXvdVbJ9e_YdvkbD3k_4C-XNsUsrIDsc8Tq0LleB6dkh2OSyYdLdGZlF83VXx2jt8eH9fK5Wr0-vSwXq0rRaZ0qIi2hoFmrZ3UtqK0lCD6VlrdQ-NxyW_N2xgVIwZQSAAIok1ooTTkhgtAxujnuHYL_yCamZutz6MvJZjoXpAxQDsW6PVoq-BiDsc0Q3F6GQ0Og-c2yYc1flsW9O7pRufKK8_0_8g-wKnRE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2891009360</pqid></control><display><type>article</type><title>Temperature dependent behavior of a kA-class superconducting flux pump with a continuous cylindrical stator</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Venuturumilli, S. ; Francis, A. C. ; Pantoja, A. E. ; Taylor, R. W. ; Brooks, J. M. ; Moseley, D. A. ; Badcock, R. A. ; Bumby, C. W.</creator><creatorcontrib>Venuturumilli, S. ; Francis, A. C. ; Pantoja, A. E. ; Taylor, R. W. ; Brooks, J. M. ; Moseley, D. A. ; Badcock, R. A. ; Bumby, C. W.</creatorcontrib><description>A high temperature superconducting (HTS) dynamo is a type of device known as a “flux pump” that can inject DC into a closed superconducting circuit. Here, we report experimental results from a variable-temperature dynamo-type HTS flux pump operated within a cryo-cooled chamber. This device employs a “continuous stator” topology, whereby an HTS “coated conductor” is wrapped to form a cylinder around a mechanical rotor such that applied flux from the rotor magnet must always penetrate the stator. This leads to a high current device that can inject &gt;1 kA into a series-connected HTS coil at 53 K. The open-circuit DC output voltage (Voc) from this HTS dynamo has been studied at stator temperatures between 35 and 95 K and attained a maxima at a temperature ∼5 K lower than the stator Tc. At lower temperatures, Voc decreases and falls to zero below ∼40 K. This non-intuitive effect is found to be due to flux-screening by critical currents flowing with the HTS stator, which increase with decreasing temperature. These shielding currents prevent flux from penetrating the HTS stator and, hence, reduce the magnitude of locally induced emf (and thus DC output) within the HTS film. A key implication of these results is that all magnetically driven HTS flux pumps should be operated at temperatures well above their flux-screening point, and this consideration must be taken into account for future designs of multi-kA class HTS flux pumps.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0169553</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Circuits ; Continuity (mathematics) ; Flux pumps ; High temperature ; Rotors ; Screening ; Stators ; Superconductivity ; Temperature ; Temperature dependence ; Topology</subject><ispartof>Applied physics letters, 2023-11, Vol.123 (20)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-1af130d5bd47793f7a0962af6b03278f6f76b4690a95cc9009035ad9cd3611913</citedby><cites>FETCH-LOGICAL-c327t-1af130d5bd47793f7a0962af6b03278f6f76b4690a95cc9009035ad9cd3611913</cites><orcidid>0000-0002-0168-9095 ; 0000-0003-0219-9570 ; 0000-0002-5644-2874 ; 0000-0001-8586-776X ; 0000-0001-7497-6442 ; 0000-0001-8555-2469 ; 0000-0001-7673-0024 ; 0000-0001-7677-8714</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0169553$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4497,27903,27904,76131</link.rule.ids></links><search><creatorcontrib>Venuturumilli, S.</creatorcontrib><creatorcontrib>Francis, A. C.</creatorcontrib><creatorcontrib>Pantoja, A. E.</creatorcontrib><creatorcontrib>Taylor, R. W.</creatorcontrib><creatorcontrib>Brooks, J. M.</creatorcontrib><creatorcontrib>Moseley, D. A.</creatorcontrib><creatorcontrib>Badcock, R. A.</creatorcontrib><creatorcontrib>Bumby, C. W.</creatorcontrib><title>Temperature dependent behavior of a kA-class superconducting flux pump with a continuous cylindrical stator</title><title>Applied physics letters</title><description>A high temperature superconducting (HTS) dynamo is a type of device known as a “flux pump” that can inject DC into a closed superconducting circuit. Here, we report experimental results from a variable-temperature dynamo-type HTS flux pump operated within a cryo-cooled chamber. This device employs a “continuous stator” topology, whereby an HTS “coated conductor” is wrapped to form a cylinder around a mechanical rotor such that applied flux from the rotor magnet must always penetrate the stator. This leads to a high current device that can inject &gt;1 kA into a series-connected HTS coil at 53 K. The open-circuit DC output voltage (Voc) from this HTS dynamo has been studied at stator temperatures between 35 and 95 K and attained a maxima at a temperature ∼5 K lower than the stator Tc. At lower temperatures, Voc decreases and falls to zero below ∼40 K. This non-intuitive effect is found to be due to flux-screening by critical currents flowing with the HTS stator, which increase with decreasing temperature. These shielding currents prevent flux from penetrating the HTS stator and, hence, reduce the magnitude of locally induced emf (and thus DC output) within the HTS film. A key implication of these results is that all magnetically driven HTS flux pumps should be operated at temperatures well above their flux-screening point, and this consideration must be taken into account for future designs of multi-kA class HTS flux pumps.</description><subject>Applied physics</subject><subject>Circuits</subject><subject>Continuity (mathematics)</subject><subject>Flux pumps</subject><subject>High temperature</subject><subject>Rotors</subject><subject>Screening</subject><subject>Stators</subject><subject>Superconductivity</subject><subject>Temperature</subject><subject>Temperature dependence</subject><subject>Topology</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKsH_0HAk8LWSdNkm2MpfkHBSz0v2XzYtNvNmg-1_95IPXsahueZGeZF6JrAhACn92wChAvG6AkaEajrihIyP0UjAKBVAeQcXcS4LS2bUjpCu7XZDybIlIPB2gym16ZPuDUb-el8wN5iiXeLSnUyRhxzcZXvdVbJ9e_YdvkbD3k_4C-XNsUsrIDsc8Tq0LleB6dkh2OSyYdLdGZlF83VXx2jt8eH9fK5Wr0-vSwXq0rRaZ0qIi2hoFmrZ3UtqK0lCD6VlrdQ-NxyW_N2xgVIwZQSAAIok1ooTTkhgtAxujnuHYL_yCamZutz6MvJZjoXpAxQDsW6PVoq-BiDsc0Q3F6GQ0Og-c2yYc1flsW9O7pRufKK8_0_8g-wKnRE</recordid><startdate>20231113</startdate><enddate>20231113</enddate><creator>Venuturumilli, S.</creator><creator>Francis, A. C.</creator><creator>Pantoja, A. E.</creator><creator>Taylor, R. W.</creator><creator>Brooks, J. M.</creator><creator>Moseley, D. A.</creator><creator>Badcock, R. A.</creator><creator>Bumby, C. W.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0168-9095</orcidid><orcidid>https://orcid.org/0000-0003-0219-9570</orcidid><orcidid>https://orcid.org/0000-0002-5644-2874</orcidid><orcidid>https://orcid.org/0000-0001-8586-776X</orcidid><orcidid>https://orcid.org/0000-0001-7497-6442</orcidid><orcidid>https://orcid.org/0000-0001-8555-2469</orcidid><orcidid>https://orcid.org/0000-0001-7673-0024</orcidid><orcidid>https://orcid.org/0000-0001-7677-8714</orcidid></search><sort><creationdate>20231113</creationdate><title>Temperature dependent behavior of a kA-class superconducting flux pump with a continuous cylindrical stator</title><author>Venuturumilli, S. ; Francis, A. C. ; Pantoja, A. E. ; Taylor, R. W. ; Brooks, J. M. ; Moseley, D. A. ; Badcock, R. A. ; Bumby, C. W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-1af130d5bd47793f7a0962af6b03278f6f76b4690a95cc9009035ad9cd3611913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applied physics</topic><topic>Circuits</topic><topic>Continuity (mathematics)</topic><topic>Flux pumps</topic><topic>High temperature</topic><topic>Rotors</topic><topic>Screening</topic><topic>Stators</topic><topic>Superconductivity</topic><topic>Temperature</topic><topic>Temperature dependence</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Venuturumilli, S.</creatorcontrib><creatorcontrib>Francis, A. C.</creatorcontrib><creatorcontrib>Pantoja, A. E.</creatorcontrib><creatorcontrib>Taylor, R. W.</creatorcontrib><creatorcontrib>Brooks, J. M.</creatorcontrib><creatorcontrib>Moseley, D. A.</creatorcontrib><creatorcontrib>Badcock, R. A.</creatorcontrib><creatorcontrib>Bumby, C. W.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Venuturumilli, S.</au><au>Francis, A. C.</au><au>Pantoja, A. E.</au><au>Taylor, R. W.</au><au>Brooks, J. M.</au><au>Moseley, D. A.</au><au>Badcock, R. A.</au><au>Bumby, C. W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temperature dependent behavior of a kA-class superconducting flux pump with a continuous cylindrical stator</atitle><jtitle>Applied physics letters</jtitle><date>2023-11-13</date><risdate>2023</risdate><volume>123</volume><issue>20</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>A high temperature superconducting (HTS) dynamo is a type of device known as a “flux pump” that can inject DC into a closed superconducting circuit. Here, we report experimental results from a variable-temperature dynamo-type HTS flux pump operated within a cryo-cooled chamber. This device employs a “continuous stator” topology, whereby an HTS “coated conductor” is wrapped to form a cylinder around a mechanical rotor such that applied flux from the rotor magnet must always penetrate the stator. This leads to a high current device that can inject &gt;1 kA into a series-connected HTS coil at 53 K. The open-circuit DC output voltage (Voc) from this HTS dynamo has been studied at stator temperatures between 35 and 95 K and attained a maxima at a temperature ∼5 K lower than the stator Tc. At lower temperatures, Voc decreases and falls to zero below ∼40 K. This non-intuitive effect is found to be due to flux-screening by critical currents flowing with the HTS stator, which increase with decreasing temperature. These shielding currents prevent flux from penetrating the HTS stator and, hence, reduce the magnitude of locally induced emf (and thus DC output) within the HTS film. A key implication of these results is that all magnetically driven HTS flux pumps should be operated at temperatures well above their flux-screening point, and this consideration must be taken into account for future designs of multi-kA class HTS flux pumps.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0169553</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-0168-9095</orcidid><orcidid>https://orcid.org/0000-0003-0219-9570</orcidid><orcidid>https://orcid.org/0000-0002-5644-2874</orcidid><orcidid>https://orcid.org/0000-0001-8586-776X</orcidid><orcidid>https://orcid.org/0000-0001-7497-6442</orcidid><orcidid>https://orcid.org/0000-0001-8555-2469</orcidid><orcidid>https://orcid.org/0000-0001-7673-0024</orcidid><orcidid>https://orcid.org/0000-0001-7677-8714</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2023-11, Vol.123 (20)
issn 0003-6951
1077-3118
language eng
recordid cdi_crossref_primary_10_1063_5_0169553
source AIP Journals Complete; Alma/SFX Local Collection
subjects Applied physics
Circuits
Continuity (mathematics)
Flux pumps
High temperature
Rotors
Screening
Stators
Superconductivity
Temperature
Temperature dependence
Topology
title Temperature dependent behavior of a kA-class superconducting flux pump with a continuous cylindrical stator
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T06%3A57%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temperature%20dependent%20behavior%20of%20a%20kA-class%20superconducting%20flux%20pump%20with%20a%20continuous%20cylindrical%20stator&rft.jtitle=Applied%20physics%20letters&rft.au=Venuturumilli,%20S.&rft.date=2023-11-13&rft.volume=123&rft.issue=20&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0169553&rft_dat=%3Cproquest_cross%3E2891009360%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2891009360&rft_id=info:pmid/&rfr_iscdi=true