Internal dynamics of recurrent neural networks trained to generate complex spatiotemporal patterns

How complex patterns generated by neural systems are represented in individual neuronal activity is an essential problem in computational neuroscience as well as machine learning communities. Here, based on recurrent neural networks in the form of feedback reservoir computers, we show microscopic fe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chaos (Woodbury, N.Y.) N.Y.), 2023-09, Vol.33 (9)
Hauptverfasser: Maslennikov, Oleg V., Gao, Chao, Nekorkin, Vladimir I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page
container_title Chaos (Woodbury, N.Y.)
container_volume 33
creator Maslennikov, Oleg V.
Gao, Chao
Nekorkin, Vladimir I.
description How complex patterns generated by neural systems are represented in individual neuronal activity is an essential problem in computational neuroscience as well as machine learning communities. Here, based on recurrent neural networks in the form of feedback reservoir computers, we show microscopic features resulting in generating spatiotemporal patterns including multicluster and chimera states. We show the effect of individual neural trajectories as well as whole-network activity distributions on exhibiting particular regimes. In addition, we address the question how trained output weights contribute to the autonomous multidimensional dynamics.
doi_str_mv 10.1063/5.0166359
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0166359</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2865905635</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-6bbe4533bb1e65813eaa74746d8ee3b4c5d2d0af4f8e124ee660ec41dd99ff7e3</originalsourceid><addsrcrecordid>eNp90LtOwzAUgGELgUQpDLyBJRZASrHjS5IRVVwqVWKB2XKcE5SS2MF2BH17EtKJgcm2zucz_AhdUrKiRLI7sSJUSiaKI7SgJC-STObp8XQXPKGCkFN0FsKOEEJTJhao3NgI3uoWV3uru8YE7GrswQzeg43YwuDHoYX45fxHwNHrxkKFo8PvYMHrCNi4rm_hG4dex8ZF6Ho3_Rlf0-pwjk5q3Qa4OJxL9Pb48Lp-TrYvT5v1_TYxLBUxkWUJXDBWlhSkyCkDrTOecVnlAKzkRlRpRXTN6xxoygGkJGA4raqiqOsM2BJdz3t77z4HCFF1TTDQttqCG4JK8zFMVtCcjPTqD925Yarwq0RBxJhwVDezMt6F4KFWvW867feKEjXVVkIdao_2drbBNHHKYP_BP4qrgQY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2865905635</pqid></control><display><type>article</type><title>Internal dynamics of recurrent neural networks trained to generate complex spatiotemporal patterns</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Maslennikov, Oleg V. ; Gao, Chao ; Nekorkin, Vladimir I.</creator><creatorcontrib>Maslennikov, Oleg V. ; Gao, Chao ; Nekorkin, Vladimir I.</creatorcontrib><description>How complex patterns generated by neural systems are represented in individual neuronal activity is an essential problem in computational neuroscience as well as machine learning communities. Here, based on recurrent neural networks in the form of feedback reservoir computers, we show microscopic features resulting in generating spatiotemporal patterns including multicluster and chimera states. We show the effect of individual neural trajectories as well as whole-network activity distributions on exhibiting particular regimes. In addition, we address the question how trained output weights contribute to the autonomous multidimensional dynamics.</description><identifier>ISSN: 1054-1500</identifier><identifier>EISSN: 1089-7682</identifier><identifier>DOI: 10.1063/5.0166359</identifier><identifier>CODEN: CHAOEH</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Machine learning ; Recurrent neural networks</subject><ispartof>Chaos (Woodbury, N.Y.), 2023-09, Vol.33 (9)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-6bbe4533bb1e65813eaa74746d8ee3b4c5d2d0af4f8e124ee660ec41dd99ff7e3</citedby><cites>FETCH-LOGICAL-c325t-6bbe4533bb1e65813eaa74746d8ee3b4c5d2d0af4f8e124ee660ec41dd99ff7e3</cites><orcidid>0000-0003-0173-587X ; 0000-0002-5865-2285 ; 0000-0002-8909-321X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,794,4512,27924,27925</link.rule.ids></links><search><creatorcontrib>Maslennikov, Oleg V.</creatorcontrib><creatorcontrib>Gao, Chao</creatorcontrib><creatorcontrib>Nekorkin, Vladimir I.</creatorcontrib><title>Internal dynamics of recurrent neural networks trained to generate complex spatiotemporal patterns</title><title>Chaos (Woodbury, N.Y.)</title><description>How complex patterns generated by neural systems are represented in individual neuronal activity is an essential problem in computational neuroscience as well as machine learning communities. Here, based on recurrent neural networks in the form of feedback reservoir computers, we show microscopic features resulting in generating spatiotemporal patterns including multicluster and chimera states. We show the effect of individual neural trajectories as well as whole-network activity distributions on exhibiting particular regimes. In addition, we address the question how trained output weights contribute to the autonomous multidimensional dynamics.</description><subject>Machine learning</subject><subject>Recurrent neural networks</subject><issn>1054-1500</issn><issn>1089-7682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp90LtOwzAUgGELgUQpDLyBJRZASrHjS5IRVVwqVWKB2XKcE5SS2MF2BH17EtKJgcm2zucz_AhdUrKiRLI7sSJUSiaKI7SgJC-STObp8XQXPKGCkFN0FsKOEEJTJhao3NgI3uoWV3uru8YE7GrswQzeg43YwuDHoYX45fxHwNHrxkKFo8PvYMHrCNi4rm_hG4dex8ZF6Ho3_Rlf0-pwjk5q3Qa4OJxL9Pb48Lp-TrYvT5v1_TYxLBUxkWUJXDBWlhSkyCkDrTOecVnlAKzkRlRpRXTN6xxoygGkJGA4raqiqOsM2BJdz3t77z4HCFF1TTDQttqCG4JK8zFMVtCcjPTqD925Yarwq0RBxJhwVDezMt6F4KFWvW867feKEjXVVkIdao_2drbBNHHKYP_BP4qrgQY</recordid><startdate>202309</startdate><enddate>202309</enddate><creator>Maslennikov, Oleg V.</creator><creator>Gao, Chao</creator><creator>Nekorkin, Vladimir I.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0173-587X</orcidid><orcidid>https://orcid.org/0000-0002-5865-2285</orcidid><orcidid>https://orcid.org/0000-0002-8909-321X</orcidid></search><sort><creationdate>202309</creationdate><title>Internal dynamics of recurrent neural networks trained to generate complex spatiotemporal patterns</title><author>Maslennikov, Oleg V. ; Gao, Chao ; Nekorkin, Vladimir I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-6bbe4533bb1e65813eaa74746d8ee3b4c5d2d0af4f8e124ee660ec41dd99ff7e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Machine learning</topic><topic>Recurrent neural networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maslennikov, Oleg V.</creatorcontrib><creatorcontrib>Gao, Chao</creatorcontrib><creatorcontrib>Nekorkin, Vladimir I.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Chaos (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maslennikov, Oleg V.</au><au>Gao, Chao</au><au>Nekorkin, Vladimir I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Internal dynamics of recurrent neural networks trained to generate complex spatiotemporal patterns</atitle><jtitle>Chaos (Woodbury, N.Y.)</jtitle><date>2023-09</date><risdate>2023</risdate><volume>33</volume><issue>9</issue><issn>1054-1500</issn><eissn>1089-7682</eissn><coden>CHAOEH</coden><abstract>How complex patterns generated by neural systems are represented in individual neuronal activity is an essential problem in computational neuroscience as well as machine learning communities. Here, based on recurrent neural networks in the form of feedback reservoir computers, we show microscopic features resulting in generating spatiotemporal patterns including multicluster and chimera states. We show the effect of individual neural trajectories as well as whole-network activity distributions on exhibiting particular regimes. In addition, we address the question how trained output weights contribute to the autonomous multidimensional dynamics.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0166359</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-0173-587X</orcidid><orcidid>https://orcid.org/0000-0002-5865-2285</orcidid><orcidid>https://orcid.org/0000-0002-8909-321X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1054-1500
ispartof Chaos (Woodbury, N.Y.), 2023-09, Vol.33 (9)
issn 1054-1500
1089-7682
language eng
recordid cdi_crossref_primary_10_1063_5_0166359
source AIP Journals Complete; Alma/SFX Local Collection
subjects Machine learning
Recurrent neural networks
title Internal dynamics of recurrent neural networks trained to generate complex spatiotemporal patterns
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T17%3A54%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Internal%20dynamics%20of%20recurrent%20neural%20networks%20trained%20to%20generate%20complex%20spatiotemporal%20patterns&rft.jtitle=Chaos%20(Woodbury,%20N.Y.)&rft.au=Maslennikov,%20Oleg%20V.&rft.date=2023-09&rft.volume=33&rft.issue=9&rft.issn=1054-1500&rft.eissn=1089-7682&rft.coden=CHAOEH&rft_id=info:doi/10.1063/5.0166359&rft_dat=%3Cproquest_cross%3E2865905635%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2865905635&rft_id=info:pmid/&rfr_iscdi=true