Internal dynamics of recurrent neural networks trained to generate complex spatiotemporal patterns

How complex patterns generated by neural systems are represented in individual neuronal activity is an essential problem in computational neuroscience as well as machine learning communities. Here, based on recurrent neural networks in the form of feedback reservoir computers, we show microscopic fe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chaos (Woodbury, N.Y.) N.Y.), 2023-09, Vol.33 (9)
Hauptverfasser: Maslennikov, Oleg V., Gao, Chao, Nekorkin, Vladimir I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:How complex patterns generated by neural systems are represented in individual neuronal activity is an essential problem in computational neuroscience as well as machine learning communities. Here, based on recurrent neural networks in the form of feedback reservoir computers, we show microscopic features resulting in generating spatiotemporal patterns including multicluster and chimera states. We show the effect of individual neural trajectories as well as whole-network activity distributions on exhibiting particular regimes. In addition, we address the question how trained output weights contribute to the autonomous multidimensional dynamics.
ISSN:1054-1500
1089-7682
DOI:10.1063/5.0166359