Mechanically exfoliated low-layered [Ca2CoO3]0.62[CoO2]: A single-crystalline p-type transparent conducting oxide
Transparent conducting oxides (TCOs) are essential components of optoelectronic devices and various materials have been explored for highly efficient TCOs having a combination of high transmittance and low sheet resistance. Here, we focus on a misfit thermoelectric oxide [Ca2CoO3]0.62[CoO2] and fabr...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2023-07, Vol.123 (5) |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Transparent conducting oxides (TCOs) are essential components of optoelectronic devices and various materials have been explored for highly efficient TCOs having a combination of high transmittance and low sheet resistance. Here, we focus on a misfit thermoelectric oxide [Ca2CoO3]0.62[CoO2] and fabricate the transparent low-layered crystals by a mechanical tape-peeling method using the single-crystalline samples. From the transmittance measurement, we find that the thickness of low-layered samples is several orders of hundred nanometers, which is comparable with the estimation from the scanning electron microscopy images. Compared to the previous results on the polycrystalline and c-axis oriented transparent films, the electrical resistivity is reduced owing to the single-crystalline nature. The figure of merit for the transparent conducting materials in the present low-layered samples is then evaluated to be higher than the values in the previous reports. The present results on the low-layered single-crystalline [Ca2CoO3]0.62[CoO2] may offer a unique class of multi-functional transparent thermoelectric oxides. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/5.0162677 |