Surface entrapment of micromotors by a background temperature field
The fabrication of self-propelling micromotors and the study of their propulsion strategies have gained attention due to their wide range of applications in the medical, engineering, and environmental fields. The role of a background temperature field in the precise navigation of a self-thermophoret...
Gespeichert in:
Veröffentlicht in: | Physics of fluids (1994) 2023-08, Vol.35 (8) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The fabrication of self-propelling micromotors and the study of their propulsion strategies have gained attention due to their wide range of applications in the medical, engineering, and environmental fields. The role of a background temperature field in the precise navigation of a self-thermophoretic micromotor near an insulated wall has been investigated by employing exact solutions to the energy equation and creeping flow. We report bound states for half-coated micromotors appearing as steady-state sliding, damped, and periodic oscillations when the dimensionless external temperature gradient
(
S
) is in the range of
0.15
≤
S
<
0.26. The sliding height is lower with
S but remains insensitive to the thermal conductivity contrast. Moreover, the stationary states for the self-propelled, asymmetrically coated micromotors transform into scattering trajectories. We highlight the combinations of
S and coating coverage needed for guided swimming up or against the field along with a broad spectrum of counter-intuitive temporal variations of its navigating locations. These unique observations have been ascribed to a confinement-mediated dynamic coupling between the passive and active propulsion mechanisms. |
---|---|
ISSN: | 1070-6631 1089-7666 |
DOI: | 10.1063/5.0159880 |