A first principles study of the in-plane strain effects on the dielectric constant of high-κ Be0.25Mg0.75O superlattice

The effects of in-plane strain on the dielectric constant of the Be0.25Mg0.75O rock salt superlattice are investigated through ab initio thermodynamics calculations. Based on a previous report that the long apical Be–O bond increased the dielectric constant, the in-plane compressive strain dielectri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2023-08, Vol.134 (5)
Hauptverfasser: Yoon, Seungjae, Han, Gyuseung, Ye, Kun Hee, Jeong, Taeyoung, Hwang, Cheol Seong, Choi, Jung-Hae
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The effects of in-plane strain on the dielectric constant of the Be0.25Mg0.75O rock salt superlattice are investigated through ab initio thermodynamics calculations. Based on a previous report that the long apical Be–O bond increased the dielectric constant, the in-plane compressive strain dielectric constant is expected to increase the dielectric constant. Unlike the zero-strain case, the apical Mg–O bonds also contribute to the increase in the dielectric constant under compressive strain. However, small Be ions tend to occupy narrow spaces in the MgO-based rock salt structure, which can lead to an increase in dielectric constant even under in-plane tensile strain, depending on the local position of Be ions and its interaction with O ions. At higher temperatures, several configurations under strain showed a significant increase in the dielectric constant due to the elongation of the apical Be–O bond. Considering temperature and strain comprehensively, this study suggests that the Be0.25MgO0.75O superlattice under −2% in-plane compressive strain could be a promising candidate structure for achieving a high-κ value of approximately 30.
ISSN:0021-8979
1089-7550
DOI:10.1063/5.0159353