Interatomic and intermolecular Coulombic decay rates from equation-of-motion coupled-cluster theory with complex basis functions

When a vacancy is created in an inner-valence orbital of a dimer of atoms or molecules, the resulting species can undergo interatomic/intermolecular Coulombic decay (ICD): the hole is filled through a relaxation process that leads to a doubly ionized cluster with two positively charged atoms or mole...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2023-09, Vol.159 (9)
Hauptverfasser: Parravicini, Valentina, Jagau, Thomas-C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:When a vacancy is created in an inner-valence orbital of a dimer of atoms or molecules, the resulting species can undergo interatomic/intermolecular Coulombic decay (ICD): the hole is filled through a relaxation process that leads to a doubly ionized cluster with two positively charged atoms or molecules. Since they are subject to electronic decay, inner-valence ionized states are not bound states but electronic resonances whose transient nature can only be described with special quantum-chemical methods. In this work, we explore the capacity of equation-of-motion coupled-cluster theory with two techniques from non-Hermitian quantum mechanics, complex basis functions and Feshbach–Fano projection with a plane wave description of the outgoing electron, to describe ICD. To this end, we compute the decay rates of several dimers: Ne2, NeAr, NeMg, and (HF)2, among which the energy of the outgoing electron varies between 0.3 and 16 eV. We observe that both methods deliver better results when the outgoing electron is fast, but the characteristic R−6 distance dependence of the ICD width is captured much better with complex basis functions.
ISSN:0021-9606
1089-7690
DOI:10.1063/5.0158374