Linear eigenvalue statistics of XX′ matrices

This article focuses on the fluctuations of linear eigenvalue statistics of Tn×pTn×p′, where Tn×p is an n × p Toeplitz matrix with real, complex, or time-dependent entries. We show that as n → ∞ with p/n → λ ∈ (0, ∞), the linear eigenvalue statistics of these matrices for polynomial test functions c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2023-12, Vol.64 (12)
Hauptverfasser: A. S., Kiran Kumar, Maurya, Shambhu Nath, Saha, Koushik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This article focuses on the fluctuations of linear eigenvalue statistics of Tn×pTn×p′, where Tn×p is an n × p Toeplitz matrix with real, complex, or time-dependent entries. We show that as n → ∞ with p/n → λ ∈ (0, ∞), the linear eigenvalue statistics of these matrices for polynomial test functions converge in distribution to Gaussian random variables. We also discuss the linear eigenvalue statistics of Hn×pHn×p′, when Hn×p is an n × p Hankel matrix. As a result of our studies, we derive in-probability limit and a central limit theorem type result for the Schettan norm of rectangular Toeplitz matrices. To establish the results, we use the method of moments.
ISSN:0022-2488
1089-7658
DOI:10.1063/5.0156637