Evaporation-driven gravitational instability in the liquid layer of a polymer solution: Theoretical and numerical studies
The drying of the thin liquid film of polymer solution is a complex process accompanying instabilities induced by concentration gradients that develop during the evaporation. This study investigates evaporation-driven gravitational instabilities (Rayleigh–Taylor instability) in the thin liquid film...
Gespeichert in:
Veröffentlicht in: | Physics of fluids (1994) 2023-06, Vol.35 (6) |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The drying of the thin liquid film of polymer solution is a complex process accompanying instabilities induced by concentration gradients that develop during the evaporation. This study investigates evaporation-driven gravitational instabilities (Rayleigh–Taylor instability) in the thin liquid film of a polymer solution based on theoretical and numerical analyses, specifically focusing on the onset of instability at the early stage of the drying process. Evaporation-driven convection is taken into account by employing a dynamic moving boundary condition and concentration-dependent material functions (dynamic viscosity and diffusivity). A theoretical analysis predicts the onset of gravitational instability (
τ
c
), showing good agreement with the results of a numerical simulation analysis (
τ
d
), suggesting scaling relationships between the onset of instability and the initial concentration (Ci),
τ
c
∼
C
i
−
1
/
2, for a slow evaporation rate and dilute concentration range, which rapidly increases with an increase in the concentration due to an instability-retardation effect. A nonlinear two-dimensional numerical simulation visualizes the development of a polymer-dense layer, pluming, and a convection–diffusion flow throughout the liquid film under transient evaporation. The concentration-gradient-driven convection–diffusion flow enhances the gravitational instability and pluming further at higher frequencies. Meanwhile, for a polymer solution with high viscosity, viscosity thickening delays the onset of instability, retarding the development of instability. This study provides a fundamental understanding of the mechanism behind how convective instability develops in a drying polymer solution during evaporation and information on how to develop pluming of a polymer-dense skin layer at early stages of drying of a polymer solution film. The findings suggest that the proper control of hydrodynamic instability induced by a concentration gradient in a thin polymer solution film is important to prevent or enhance the formation of a convection pattern in the thin polymer film. |
---|---|
ISSN: | 1070-6631 1089-7666 |
DOI: | 10.1063/5.0152147 |