Combining electrically detected magnetic resonance techniques to study atomic-scale defects generated by hot-carrier stressing in HfO2/SiO2/Si transistors
This work explores the atomic-scale nature of defects within hafnium dioxide/silicon dioxide/silicon (HfO2/SiO2/Si) transistors generated by hot-carrier stressing. The defects are studied via electrically detected magnetic resonance (EDMR) through both spin-dependent charge pumping and spin-dependen...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2023-04, Vol.133 (14) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This work explores the atomic-scale nature of defects within hafnium dioxide/silicon dioxide/silicon (HfO2/SiO2/Si) transistors generated by hot-carrier stressing. The defects are studied via electrically detected magnetic resonance (EDMR) through both spin-dependent charge pumping and spin-dependent tunneling. When combined, these techniques probe defects both at the Si-side interface and within the oxide-based gate stack. The defects at the Si-side interface are found to strongly resemble Pb-like defects common in the Si/SiO2 system. The defect within the gate stack has not been positively identified in the literature thus far; this work argues that it is a Si-dangling bond coupled to one or more hafnium atoms. The use of EDMR techniques indicates that the defects detected here are relevant to electronic transport and, thus, device reliability. This work also highlights the impressive analytical power of combined EDMR techniques when studying complex, modern materials systems. |
---|---|
ISSN: | 0021-8979 1089-7550 |
DOI: | 10.1063/5.0145937 |