Superconductor digital circuits with π junctions alone
We adopt superconductor/ferromagnet/insulator/superconductor (SFIS) Josephson junctions (JJs) as both switching JJs and intrinsic π phase shifters in superconductor digital circuits. The critical current density (Jc) and characteristic voltage (Vc) of the SFIS junctions are about 22 A/cm2 and 22 μV,...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2023-04, Vol.122 (16) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We adopt superconductor/ferromagnet/insulator/superconductor (SFIS) Josephson junctions (JJs) as both switching JJs and intrinsic π phase shifters in superconductor digital circuits. The critical current density (Jc) and characteristic voltage (Vc) of the SFIS junctions are about 22 A/cm2 and 22 μV, respectively. The intrinsic π phase shift is confirmed by measuring the suppressed nominal critical current Icn and half-period-shifted modulation pattern of a π–π–π superconducting quantum interference device (SQUID) that contains three π-JJs in a superconducting loop. A single-flux-quantum (SFQ) circuit composed of a DC/SFQ, Josephson transmission line (JTL), and SFQ/DC converter based on SFIS JJs alone is demonstrated at 4.2 K. The energy dissipation of the SFQ/DC converter decreases by 80% because some JJs are self-biased by the π phase shifter. The intrinsic circulating currents induced by the π phase shifters lead to a narrow bias margin (±5%) and even error function, which can be solved by parameters optimization or circuit initialization in the future. The half-modulation period (Φ0/2) of a half-flux-quantum (HFQ) SQUID (a partial HFQ JTL) exhibits propagation of HFQ between π–π–π SQUIDs, indicating that more complex HFQ circuits can be developed with π-JJs alone in the future. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/5.0144604 |