Abnormal strain-dependent thermal conductivity in biphenylene monolayer using machine learning interatomic potential

Applying tensile strain on an intrinsic lattice always results in the reduction in thermal conductivity due to the red-shift of phonon frequency and enhanced phonon anharmonicity. However, in this work, we explored an unexpected strain-enhanced thermal conductivity of a planar biphenylene network (B...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2023-02, Vol.122 (8)
Hauptverfasser: Yang, Guangyu, Hu, Yanxiao, Qiu, Zhanjun, Li, Bo-Lin, Zhou, Ping, Li, Dengfeng, Zhang, Gang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Applying tensile strain on an intrinsic lattice always results in the reduction in thermal conductivity due to the red-shift of phonon frequency and enhanced phonon anharmonicity. However, in this work, we explored an unexpected strain-enhanced thermal conductivity of a planar biphenylene network (BPN) in the frame of a Boltzmann transport equation combined with the machine learning interatomic potential. Under 5% biaxial tensile strain, the room temperature thermal conductivity of BPN reaches to about 4–5 times of that in an intrinsic sample. This phenomenon can be understood by considering a mirror symmetry induced phonon selection rule. This work highlights the significant effect of the selection rule on thermal transport and enriches the understanding of the thermal conductivity regulation in strained two-dimensional materials.
ISSN:0003-6951
1077-3118
DOI:10.1063/5.0140014