Resonance dependence of electrically reconfigurable VO2-based THz metadevice for memory information processing

A terahertz hybrid metamaterial incorporated with active media VO2 holds great promise for the realization of a new generation of reconfigurable and multifunctional devices. However, for the electrical control, many efforts on reducing high working threshold are usually based on the utilization of p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2023-02, Vol.122 (7)
Hauptverfasser: Liang, Wanlin, Li, Ge, Zhou, Qingli, Zhang, Ziye, Zhang, Suqi, Ning, Tingyin, Zhang, Pujing, Deng, Yuwang, Zhang, Cunlin, Ge, Chen, Jin, Kuijuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A terahertz hybrid metamaterial incorporated with active media VO2 holds great promise for the realization of a new generation of reconfigurable and multifunctional devices. However, for the electrical control, many efforts on reducing high working threshold are usually based on the utilization of patterned VO2 patches or additional insulation layers, which will increase the complexity of the fabrication procedure. Here, we have proposed an effective strategy only by combining the surface microstructure and the unpatterned VO2 film to realize the tunability of working current and uncover its highly dependent correlation with the structural resonance responses. It is shown the fully modulated current in our hybrid metastructures can be reduced with the prominently separated hysteresis loops. Further developed binary encoders can perform not only the information transformation of the fixed code symbols but also the arbitrary encoding with the programmable current pulse. Additionally, the dynamic color display can be accomplished to illustrate the intriguing function of the information encryption and multi-image reappearance with the current as the decryption key. Our work provides an approach to reduce the operating current and paves a pathway for the development of photonic memory information processors.
ISSN:0003-6951
1077-3118
DOI:10.1063/5.0137168