Can a deep-learning model make fast predictions of vacancy formation in diverse materials?

The presence of point defects, such as vacancies, plays an important role in materials design. Here, we explore the extrapolative power of a graph neural network (GNN) to predict vacancy formation energies. We show that a model trained only on perfect materials can also be used to predict vacancy fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIP advances 2023-09, Vol.13 (9), p.095109-095109-6
Hauptverfasser: Choudhary, Kamal, Sumpter, Bobby G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The presence of point defects, such as vacancies, plays an important role in materials design. Here, we explore the extrapolative power of a graph neural network (GNN) to predict vacancy formation energies. We show that a model trained only on perfect materials can also be used to predict vacancy formation energies (Evac) of defect structures without the need for additional training data. Such GNN-based predictions are considerably faster than density functional theory (DFT) calculations and show potential as a quick pre-screening tool for defect systems. To test this strategy, we developed a DFT dataset of 530 Evac consisting of 3D elemental solids, alloys, oxides, semiconductors, and 2D monolayer materials. We analyzed and discussed the applicability of such direct and fast predictions. We applied the model to predict 192 494 Evac for 55 723 materials in the JARVIS-DFT database. Our work demonstrates how a GNN-model performs on unseen data.
ISSN:2158-3226
2158-3226
DOI:10.1063/5.0135382