Diameter-dependent ultrafast lithium-ion transport in carbon nanotubes

Ion transport in solids is a key topic in solid-state ionics. It is critical but challenging to understand the relationship between material structures and ion transport. Nanochannels in crystals provide ion transport pathways, which are responsible for the fast ion transport in fast lithium (Li)-io...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2023-01, Vol.158 (1), p.014702-014702
Hauptverfasser: Fu, Zhong-Heng, Chen, Xiang, Yao, Nan, Yu, Le-Geng, Shen, Xin, Shi, Shaochen, Zhang, Rui, Sha, Zhengju, Feng, Shuai, Xia, Yu, Zhang, Qiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ion transport in solids is a key topic in solid-state ionics. It is critical but challenging to understand the relationship between material structures and ion transport. Nanochannels in crystals provide ion transport pathways, which are responsible for the fast ion transport in fast lithium (Li)-ion conductors. The controlled synthesis of carbon nanotubes (CNTs) provides a promising approach to artificially regulating nanochannels. Herein, the CNTs with a diameter of 5.5 Å are predicted to exhibit an ultralow Li-ion diffusion barrier of about 10 meV, much lower than those in routine solid electrolyte materials. Such a characteristic is attributed to the similar chemical environment of a Li ion during its diffusion based on atomic and electronic structure analyses. The concerted diffusion of Li ions ensures high ionic conductivities of CNTs. These results not only reveal the immense potential of CNTs for fast Li-ion transport but also provide a new understanding for rationally designing solid materials with high ionic conductivities.
ISSN:0021-9606
1089-7690
DOI:10.1063/5.0131408