Bifurcations, relaxation time, and critical exponents in a dissipative or conservative Fermi model

We investigated the time evolution for the stationary state at different bifurcations of a dissipative version of the Fermi-Ulam accelerator model. For local bifurcations, as period-doubling bifurcations, the convergence to the inactive state is made using a homogeneous and generalized function at t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chaos (Woodbury, N.Y.) N.Y.), 2023-02, Vol.33 (2), p.023138-023138
Hauptverfasser: S Rando, Danilo, C Martí, Arturo, D Leonel, Edson
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigated the time evolution for the stationary state at different bifurcations of a dissipative version of the Fermi-Ulam accelerator model. For local bifurcations, as period-doubling bifurcations, the convergence to the inactive state is made using a homogeneous and generalized function at the bifurcation parameter. It leads to a set of three critical exponents that are universal for such bifurcation. Near bifurcation, an exponential decay describes convergence whose relaxation time is characterized by a power law. For global bifurcation, as noticed for a boundary crisis, where a chaotic transient suddenly replaces a chaotic attractor after a tiny change of control parameters, the survival probability is described by an exponential decay whose transient time is given by a power law.
ISSN:1054-1500
1089-7682
DOI:10.1063/5.0124411