Bifurcations, relaxation time, and critical exponents in a dissipative or conservative Fermi model
We investigated the time evolution for the stationary state at different bifurcations of a dissipative version of the Fermi-Ulam accelerator model. For local bifurcations, as period-doubling bifurcations, the convergence to the inactive state is made using a homogeneous and generalized function at t...
Gespeichert in:
Veröffentlicht in: | Chaos (Woodbury, N.Y.) N.Y.), 2023-02, Vol.33 (2), p.023138-023138 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We investigated the time evolution for the stationary state at different bifurcations of a dissipative version of the Fermi-Ulam accelerator model. For local bifurcations, as period-doubling bifurcations, the convergence to the inactive state is made using a homogeneous and generalized function at the bifurcation parameter. It leads to a set of three critical exponents that are universal for such bifurcation. Near bifurcation, an exponential decay describes convergence whose relaxation time is characterized by a power law. For global bifurcation, as noticed for a boundary crisis, where a chaotic transient suddenly replaces a chaotic attractor after a tiny change of control parameters, the survival probability is described by an exponential decay whose transient time is given by a power law. |
---|---|
ISSN: | 1054-1500 1089-7682 |
DOI: | 10.1063/5.0124411 |