Hybrid states of a cavity-photon–vortex coupled system in a superconductive cavity

As the Abrikosov vortex lattice has recently been found in van der Waals heterostructures constructed by a two-dimensional (2D) ferromagnet and a superconductor, we propose the realization of cavity-photon–vortex coupling in a superconductive cavity to construct a new hybrid quantum system in this p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2022-11, Vol.121 (19)
Hauptverfasser: Wang, Lei, Shang, Xin, Liu, Haiwen, Min, Tai, Xia, Ke
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:As the Abrikosov vortex lattice has recently been found in van der Waals heterostructures constructed by a two-dimensional (2D) ferromagnet and a superconductor, we propose the realization of cavity-photon–vortex coupling in a superconductive cavity to construct a new hybrid quantum system in this paper. We study the corresponding hybrid states therein, including the exceptional lines (ELs) in the parameter space. Considering that the parameters of our system are adjustable by external magnetic field and temperature, our system and the ELs are much easier to be realized in experiments. Furthermore, the numerical results show that the corresponding hybrid states can be switched by tuning the source of AC, which makes this hybrid system more advantageous to realize hybrid quantum computing in the future. Moreover, for practical use in detecting hybrid states and the vortex dynamics, the transmission amplitude of an external transverse electric wave through the cavity is also studied.
ISSN:0003-6951
1077-3118
DOI:10.1063/5.0123823