Effect of stomach motility on food hydrolysis and gastric emptying: Insight from computational models
The peristaltic motion of stomach walls combines with the secretion of digestive enzymes to initiate the process that breaks down food. In this study, the mixing, breakdown, and emptying of a liquid meal containing protein is simulated in a model of a human stomach. In this model, pepsin, the gastri...
Gespeichert in:
Veröffentlicht in: | Physics of fluids (1994) 2022-11, Vol.34 (11), p.111909-111909 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The peristaltic motion of stomach walls combines with the secretion of digestive enzymes to initiate the process that breaks down food. In this study, the mixing, breakdown, and emptying of a liquid meal containing protein is simulated in a model of a human stomach. In this model, pepsin, the gastric enzyme responsible for protein hydrolysis, is secreted from the proximal region of the stomach walls and allowed to react with the contents of the stomach. The velocities of the retropulsive jet induced by the peristaltic motion, the emptying rate, and the extent of hydrolysis are quantified for a control case as well as for three other cases with reduced motility of the stomach, which may result from conditions such as diabetes mellitus. This study quantifies the effect of stomach motility on the rate of food breakdown and its emptying into the duodenum and we correlate these observations with the mixing in the stomach induced by the wall motion. |
---|---|
ISSN: | 1070-6631 1089-7666 |
DOI: | 10.1063/5.0120933 |