Synaptic behavior of Fe3O4-based artificial synapse by electrolyte gating for neuromorphic computing

Neuromorphic computing (NC) is a crucial step toward realizing power-efficient artificial intelligence systems. Hardware implementation of NC is expected to overcome the challenges associated with the conventional von Neumann computer architecture. Synaptic devices that can emulate the rich function...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2023-02, Vol.133 (8)
Hauptverfasser: Monalisha, P., Li, Shengyao, Bhat, Shwetha G., Jin, Tianli, Anil Kumar, P. S., Piramanayagam, S. N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Neuromorphic computing (NC) is a crucial step toward realizing power-efficient artificial intelligence systems. Hardware implementation of NC is expected to overcome the challenges associated with the conventional von Neumann computer architecture. Synaptic devices that can emulate the rich functionalities of biological synapses are emerging. Out of several approaches, electrolyte-gated synaptic transistors have attracted enormous scientific interest owing to their similar working mechanism. Here, we report a three-terminal electrolyte-gated synaptic transistor based on Fe3O4 thin films, a half-metallic spinel ferrite. We have realized gate-controllable multilevel, non-volatile, and rewritable states for analog computing. Furthermore, we have emulated essential synaptic functions by applying electrical stimulus to the gate terminal of the synaptic device. This work provides a new candidate and a platform for spinel ferrite-based devices for future NC applications.
ISSN:0021-8979
1089-7550
DOI:10.1063/5.0120854