Micrometer-thick, atomically random Si0.06Ge0.90Sn0.04 for silicon-integrated infrared optoelectronics

A true monolithic infrared photonics platform is within reach if strain and bandgap energy can be independently engineered in SiGeSn semiconductors. Herein, we investigate the structural and optoelectronic properties of a 1.5 μm-thick Si0.06Ge0.90Sn0.04 layer that is nearly lattice-matched to a Ge o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2022-11, Vol.132 (19)
Hauptverfasser: Assali, S., Attiaoui, A., Koelling, S., Atalla, M. R. M., Kumar, A., Nicolas, J., Chowdhury, F. A., Lemieux-Leduc, C., Moutanabbir, O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 19
container_start_page
container_title Journal of applied physics
container_volume 132
creator Assali, S.
Attiaoui, A.
Koelling, S.
Atalla, M. R. M.
Kumar, A.
Nicolas, J.
Chowdhury, F. A.
Lemieux-Leduc, C.
Moutanabbir, O.
description A true monolithic infrared photonics platform is within reach if strain and bandgap energy can be independently engineered in SiGeSn semiconductors. Herein, we investigate the structural and optoelectronic properties of a 1.5 μm-thick Si0.06Ge0.90Sn0.04 layer that is nearly lattice-matched to a Ge on Si substrate. Atomic-level studies demonstrate high crystalline quality and uniform composition and show no sign of short-range ordering and clusters. Room-temperature spectroscopic ellipsometry and transmission measurements show direct bandgap absorption at 0.83 eV and a reduced indirect bandgap absorption at lower energies. Si0.06Ge0.90Sn0.04 photoconductive devices operating at room temperature exhibit dark current and spectral responsivity (1 A/W below 1.5 μm wavelengths) similar to Ge on Si devices, with the advantage of a near-infrared bandgap tunable by alloy composition. These results underline the relevance of SiGeSn semiconductors in implementing a group IV material platform for silicon-integrated infrared optoelectronics.
doi_str_mv 10.1063/5.0120505
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0120505</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2737234953</sourcerecordid><originalsourceid>FETCH-LOGICAL-c257t-23262eb83870e38328589dd0d52e757d57a59ca7ecd37c171400dca657b3f2993</originalsourceid><addsrcrecordid>eNp90MFKAzEQBuAgCtbqwTdY8KS4dZI0m-QoolWoeKielzTJaupusiap0Ld3pUUPgqf5Dx__MIPQKYYJhopesQlgAgzYHhphELLkjME-GgEQXArJ5SE6SmkFgLGgcoSaR6dj6Gy2scxvTr9fFiqHzmnVtpsiKm9CVywcTKCaWZhIWPghT4smxCK51ungS-ezfY0qW1M430QVhxD6HGxrdY7BO52O0UGj2mRPdnOMXu5un2_uy_nT7OHmel5qwnguCSUVsUtBBQdLBSWCCWkMGEYsZ9wwrpjUilttKNeY4ymA0apifEkbIiUdo7Ntbx_Dx9qmXK_COvphZU045YROJaODOt-q4fSUom3qPrpOxU2Nof5-Y83q3RsHe7G1Sbussgv-B3-G-Avr3jT_4b_NX7xSfvg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2737234953</pqid></control><display><type>article</type><title>Micrometer-thick, atomically random Si0.06Ge0.90Sn0.04 for silicon-integrated infrared optoelectronics</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Assali, S. ; Attiaoui, A. ; Koelling, S. ; Atalla, M. R. M. ; Kumar, A. ; Nicolas, J. ; Chowdhury, F. A. ; Lemieux-Leduc, C. ; Moutanabbir, O.</creator><creatorcontrib>Assali, S. ; Attiaoui, A. ; Koelling, S. ; Atalla, M. R. M. ; Kumar, A. ; Nicolas, J. ; Chowdhury, F. A. ; Lemieux-Leduc, C. ; Moutanabbir, O.</creatorcontrib><description>A true monolithic infrared photonics platform is within reach if strain and bandgap energy can be independently engineered in SiGeSn semiconductors. Herein, we investigate the structural and optoelectronic properties of a 1.5 μm-thick Si0.06Ge0.90Sn0.04 layer that is nearly lattice-matched to a Ge on Si substrate. Atomic-level studies demonstrate high crystalline quality and uniform composition and show no sign of short-range ordering and clusters. Room-temperature spectroscopic ellipsometry and transmission measurements show direct bandgap absorption at 0.83 eV and a reduced indirect bandgap absorption at lower energies. Si0.06Ge0.90Sn0.04 photoconductive devices operating at room temperature exhibit dark current and spectral responsivity (1 A/W below 1.5 μm wavelengths) similar to Ge on Si devices, with the advantage of a near-infrared bandgap tunable by alloy composition. These results underline the relevance of SiGeSn semiconductors in implementing a group IV material platform for silicon-integrated infrared optoelectronics.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0120505</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Absorption ; Applied physics ; Composition ; Dark current ; Energy gap ; Germanium ; Lattice matching ; Optoelectronics ; Room temperature ; Silicon substrates ; Spectroellipsometry</subject><ispartof>Journal of applied physics, 2022-11, Vol.132 (19)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c257t-23262eb83870e38328589dd0d52e757d57a59ca7ecd37c171400dca657b3f2993</citedby><cites>FETCH-LOGICAL-c257t-23262eb83870e38328589dd0d52e757d57a59ca7ecd37c171400dca657b3f2993</cites><orcidid>0000-0002-3919-9112 ; 0000-0003-1727-0296 ; 0000-0002-0721-3696 ; 0000-0002-9391-0884 ; 0000-0002-6606-9110</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/5.0120505$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4510,27923,27924,76155</link.rule.ids></links><search><creatorcontrib>Assali, S.</creatorcontrib><creatorcontrib>Attiaoui, A.</creatorcontrib><creatorcontrib>Koelling, S.</creatorcontrib><creatorcontrib>Atalla, M. R. M.</creatorcontrib><creatorcontrib>Kumar, A.</creatorcontrib><creatorcontrib>Nicolas, J.</creatorcontrib><creatorcontrib>Chowdhury, F. A.</creatorcontrib><creatorcontrib>Lemieux-Leduc, C.</creatorcontrib><creatorcontrib>Moutanabbir, O.</creatorcontrib><title>Micrometer-thick, atomically random Si0.06Ge0.90Sn0.04 for silicon-integrated infrared optoelectronics</title><title>Journal of applied physics</title><description>A true monolithic infrared photonics platform is within reach if strain and bandgap energy can be independently engineered in SiGeSn semiconductors. Herein, we investigate the structural and optoelectronic properties of a 1.5 μm-thick Si0.06Ge0.90Sn0.04 layer that is nearly lattice-matched to a Ge on Si substrate. Atomic-level studies demonstrate high crystalline quality and uniform composition and show no sign of short-range ordering and clusters. Room-temperature spectroscopic ellipsometry and transmission measurements show direct bandgap absorption at 0.83 eV and a reduced indirect bandgap absorption at lower energies. Si0.06Ge0.90Sn0.04 photoconductive devices operating at room temperature exhibit dark current and spectral responsivity (1 A/W below 1.5 μm wavelengths) similar to Ge on Si devices, with the advantage of a near-infrared bandgap tunable by alloy composition. These results underline the relevance of SiGeSn semiconductors in implementing a group IV material platform for silicon-integrated infrared optoelectronics.</description><subject>Absorption</subject><subject>Applied physics</subject><subject>Composition</subject><subject>Dark current</subject><subject>Energy gap</subject><subject>Germanium</subject><subject>Lattice matching</subject><subject>Optoelectronics</subject><subject>Room temperature</subject><subject>Silicon substrates</subject><subject>Spectroellipsometry</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp90MFKAzEQBuAgCtbqwTdY8KS4dZI0m-QoolWoeKielzTJaupusiap0Ld3pUUPgqf5Dx__MIPQKYYJhopesQlgAgzYHhphELLkjME-GgEQXArJ5SE6SmkFgLGgcoSaR6dj6Gy2scxvTr9fFiqHzmnVtpsiKm9CVywcTKCaWZhIWPghT4smxCK51ungS-ezfY0qW1M430QVhxD6HGxrdY7BO52O0UGj2mRPdnOMXu5un2_uy_nT7OHmel5qwnguCSUVsUtBBQdLBSWCCWkMGEYsZ9wwrpjUilttKNeY4ymA0apifEkbIiUdo7Ntbx_Dx9qmXK_COvphZU045YROJaODOt-q4fSUom3qPrpOxU2Nof5-Y83q3RsHe7G1Sbussgv-B3-G-Avr3jT_4b_NX7xSfvg</recordid><startdate>20221121</startdate><enddate>20221121</enddate><creator>Assali, S.</creator><creator>Attiaoui, A.</creator><creator>Koelling, S.</creator><creator>Atalla, M. R. M.</creator><creator>Kumar, A.</creator><creator>Nicolas, J.</creator><creator>Chowdhury, F. A.</creator><creator>Lemieux-Leduc, C.</creator><creator>Moutanabbir, O.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3919-9112</orcidid><orcidid>https://orcid.org/0000-0003-1727-0296</orcidid><orcidid>https://orcid.org/0000-0002-0721-3696</orcidid><orcidid>https://orcid.org/0000-0002-9391-0884</orcidid><orcidid>https://orcid.org/0000-0002-6606-9110</orcidid></search><sort><creationdate>20221121</creationdate><title>Micrometer-thick, atomically random Si0.06Ge0.90Sn0.04 for silicon-integrated infrared optoelectronics</title><author>Assali, S. ; Attiaoui, A. ; Koelling, S. ; Atalla, M. R. M. ; Kumar, A. ; Nicolas, J. ; Chowdhury, F. A. ; Lemieux-Leduc, C. ; Moutanabbir, O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c257t-23262eb83870e38328589dd0d52e757d57a59ca7ecd37c171400dca657b3f2993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Absorption</topic><topic>Applied physics</topic><topic>Composition</topic><topic>Dark current</topic><topic>Energy gap</topic><topic>Germanium</topic><topic>Lattice matching</topic><topic>Optoelectronics</topic><topic>Room temperature</topic><topic>Silicon substrates</topic><topic>Spectroellipsometry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Assali, S.</creatorcontrib><creatorcontrib>Attiaoui, A.</creatorcontrib><creatorcontrib>Koelling, S.</creatorcontrib><creatorcontrib>Atalla, M. R. M.</creatorcontrib><creatorcontrib>Kumar, A.</creatorcontrib><creatorcontrib>Nicolas, J.</creatorcontrib><creatorcontrib>Chowdhury, F. A.</creatorcontrib><creatorcontrib>Lemieux-Leduc, C.</creatorcontrib><creatorcontrib>Moutanabbir, O.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Assali, S.</au><au>Attiaoui, A.</au><au>Koelling, S.</au><au>Atalla, M. R. M.</au><au>Kumar, A.</au><au>Nicolas, J.</au><au>Chowdhury, F. A.</au><au>Lemieux-Leduc, C.</au><au>Moutanabbir, O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Micrometer-thick, atomically random Si0.06Ge0.90Sn0.04 for silicon-integrated infrared optoelectronics</atitle><jtitle>Journal of applied physics</jtitle><date>2022-11-21</date><risdate>2022</risdate><volume>132</volume><issue>19</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>A true monolithic infrared photonics platform is within reach if strain and bandgap energy can be independently engineered in SiGeSn semiconductors. Herein, we investigate the structural and optoelectronic properties of a 1.5 μm-thick Si0.06Ge0.90Sn0.04 layer that is nearly lattice-matched to a Ge on Si substrate. Atomic-level studies demonstrate high crystalline quality and uniform composition and show no sign of short-range ordering and clusters. Room-temperature spectroscopic ellipsometry and transmission measurements show direct bandgap absorption at 0.83 eV and a reduced indirect bandgap absorption at lower energies. Si0.06Ge0.90Sn0.04 photoconductive devices operating at room temperature exhibit dark current and spectral responsivity (1 A/W below 1.5 μm wavelengths) similar to Ge on Si devices, with the advantage of a near-infrared bandgap tunable by alloy composition. These results underline the relevance of SiGeSn semiconductors in implementing a group IV material platform for silicon-integrated infrared optoelectronics.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0120505</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-3919-9112</orcidid><orcidid>https://orcid.org/0000-0003-1727-0296</orcidid><orcidid>https://orcid.org/0000-0002-0721-3696</orcidid><orcidid>https://orcid.org/0000-0002-9391-0884</orcidid><orcidid>https://orcid.org/0000-0002-6606-9110</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2022-11, Vol.132 (19)
issn 0021-8979
1089-7550
language eng
recordid cdi_crossref_primary_10_1063_5_0120505
source AIP Journals Complete; Alma/SFX Local Collection
subjects Absorption
Applied physics
Composition
Dark current
Energy gap
Germanium
Lattice matching
Optoelectronics
Room temperature
Silicon substrates
Spectroellipsometry
title Micrometer-thick, atomically random Si0.06Ge0.90Sn0.04 for silicon-integrated infrared optoelectronics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T20%3A16%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Micrometer-thick,%20atomically%20random%20Si0.06Ge0.90Sn0.04%20for%20silicon-integrated%20infrared%20optoelectronics&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Assali,%20S.&rft.date=2022-11-21&rft.volume=132&rft.issue=19&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0120505&rft_dat=%3Cproquest_cross%3E2737234953%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2737234953&rft_id=info:pmid/&rfr_iscdi=true