Micrometer-thick, atomically random Si0.06Ge0.90Sn0.04 for silicon-integrated infrared optoelectronics

A true monolithic infrared photonics platform is within reach if strain and bandgap energy can be independently engineered in SiGeSn semiconductors. Herein, we investigate the structural and optoelectronic properties of a 1.5 μm-thick Si0.06Ge0.90Sn0.04 layer that is nearly lattice-matched to a Ge o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2022-11, Vol.132 (19)
Hauptverfasser: Assali, S., Attiaoui, A., Koelling, S., Atalla, M. R. M., Kumar, A., Nicolas, J., Chowdhury, F. A., Lemieux-Leduc, C., Moutanabbir, O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A true monolithic infrared photonics platform is within reach if strain and bandgap energy can be independently engineered in SiGeSn semiconductors. Herein, we investigate the structural and optoelectronic properties of a 1.5 μm-thick Si0.06Ge0.90Sn0.04 layer that is nearly lattice-matched to a Ge on Si substrate. Atomic-level studies demonstrate high crystalline quality and uniform composition and show no sign of short-range ordering and clusters. Room-temperature spectroscopic ellipsometry and transmission measurements show direct bandgap absorption at 0.83 eV and a reduced indirect bandgap absorption at lower energies. Si0.06Ge0.90Sn0.04 photoconductive devices operating at room temperature exhibit dark current and spectral responsivity (1 A/W below 1.5 μm wavelengths) similar to Ge on Si devices, with the advantage of a near-infrared bandgap tunable by alloy composition. These results underline the relevance of SiGeSn semiconductors in implementing a group IV material platform for silicon-integrated infrared optoelectronics.
ISSN:0021-8979
1089-7550
DOI:10.1063/5.0120505