Directional extremal statistics for Ginibre eigenvalues

We consider the eigenvalues of a large dimensional real or complex Ginibre matrix in the region of the complex plane where their real parts reach their maximum value. This maximum follows the Gumbel distribution and that these extreme eigenvalues form a Poisson point process as the dimension asympto...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2022-10, Vol.63 (10)
Hauptverfasser: Cipolloni, Giorgio, Erdős, László, Schröder, Dominik, Xu, Yuanyuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the eigenvalues of a large dimensional real or complex Ginibre matrix in the region of the complex plane where their real parts reach their maximum value. This maximum follows the Gumbel distribution and that these extreme eigenvalues form a Poisson point process as the dimension asymptotically tends to infinity. In the complex case, these facts have already been established by Bender [Probab. Theory Relat. Fields 147, 241 (2010)] and in the real case by Akemann and Phillips [J. Stat. Phys. 155, 421 (2014)] even for the more general elliptic ensemble with a sophisticated saddle point analysis. The purpose of this article is to give a very short direct proof in the Ginibre case with an effective error term. Moreover, our estimates on the correlation kernel in this regime serve as a key input for accurately locating maxRSpec(X) for any large matrix X with i.i.d. entries in the companion paper [G. Cipolloni et al., arXiv:2206.04448 (2022)].
ISSN:0022-2488
1089-7658
DOI:10.1063/5.0104290