Spectral localization for semimetals and Callias operators
A semiclassical argument is used to show that the low-lying spectrum of a self-adjoint operator, the so-called spectral localizer, determines the number of Dirac or Weyl points of an ideal semimetal. Apart from the ion-mobility spectrometer localization procedure, an explicit computation for the loc...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical physics 2023-08, Vol.64 (8) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A semiclassical argument is used to show that the low-lying spectrum of a self-adjoint operator, the so-called spectral localizer, determines the number of Dirac or Weyl points of an ideal semimetal. Apart from the ion-mobility spectrometer localization procedure, an explicit computation for the local toy models given by a Dirac or Weyl point is the key element of proof. The argument has numerous similarities to Witten’s reasoning leading to the strong Morse inequalities. The same techniques allow to prove a spectral localization for Callias operators associated with potentials with isolated gap-closing points. |
---|---|
ISSN: | 0022-2488 1089-7658 |
DOI: | 10.1063/5.0093983 |