Spectral localization for semimetals and Callias operators

A semiclassical argument is used to show that the low-lying spectrum of a self-adjoint operator, the so-called spectral localizer, determines the number of Dirac or Weyl points of an ideal semimetal. Apart from the ion-mobility spectrometer localization procedure, an explicit computation for the loc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2023-08, Vol.64 (8)
Hauptverfasser: Schulz-Baldes, Hermann, Stoiber, Tom
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A semiclassical argument is used to show that the low-lying spectrum of a self-adjoint operator, the so-called spectral localizer, determines the number of Dirac or Weyl points of an ideal semimetal. Apart from the ion-mobility spectrometer localization procedure, an explicit computation for the local toy models given by a Dirac or Weyl point is the key element of proof. The argument has numerous similarities to Witten’s reasoning leading to the strong Morse inequalities. The same techniques allow to prove a spectral localization for Callias operators associated with potentials with isolated gap-closing points.
ISSN:0022-2488
1089-7658
DOI:10.1063/5.0093983