Trapping plasmonic nanoparticles with MHz electric fields
Dielectrophoresis drives the motion of nanoparticles through the interaction of their induced dipoles with a non-uniform electric field. We experimentally observe rf dielectrophoresis on 100 nm diameter gold nanoparticles in a solution and show that for MHz frequencies, the nanoparticles can reversi...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2022-05, Vol.120 (20) |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Dielectrophoresis drives the motion of nanoparticles through the interaction of their induced dipoles with a non-uniform electric field. We experimentally observe rf dielectrophoresis on 100 nm diameter gold nanoparticles in a solution and show that for MHz frequencies, the nanoparticles can reversibly aggregate at electrode gaps. A frequency resonance is observed at which reversible trapping of gold nanoparticle “clouds” occurs in the gap center, producing almost a 1000-fold increase in density. Through accounting for gold cores surrounded by a conducting double layer ion shell, a simple model accounts for this reversibility. This suggests that substantial control over nanoparticle separation is possible, enabling the formation of equilibrium nanoarchitectures in specific locations. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/5.0091763 |