Mixing in anharmonic potential well
We prove phase-space mixing for solutions to Liouville’s equation for integrable systems. Under a natural non-harmonicity condition, we obtain weak convergence of the distribution function with rate ⟨time⟩−1. In one dimension, we also study the case where this condition fails at a certain energy, sh...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical physics 2022-07, Vol.63 (7) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove phase-space mixing for solutions to Liouville’s equation for integrable systems. Under a natural non-harmonicity condition, we obtain weak convergence of the distribution function with rate ⟨time⟩−1. In one dimension, we also study the case where this condition fails at a certain energy, showing that mixing still holds but with a slower rate. When the condition holds and functions have higher regularity, the rate can be faster. |
---|---|
ISSN: | 0022-2488 1089-7658 |
DOI: | 10.1063/5.0091016 |