Mixing in anharmonic potential well

We prove phase-space mixing for solutions to Liouville’s equation for integrable systems. Under a natural non-harmonicity condition, we obtain weak convergence of the distribution function with rate ⟨time⟩−1. In one dimension, we also study the case where this condition fails at a certain energy, sh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2022-07, Vol.63 (7)
Hauptverfasser: Moreno, M., Rioseco, P., Van Den Bosch, H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove phase-space mixing for solutions to Liouville’s equation for integrable systems. Under a natural non-harmonicity condition, we obtain weak convergence of the distribution function with rate ⟨time⟩−1. In one dimension, we also study the case where this condition fails at a certain energy, showing that mixing still holds but with a slower rate. When the condition holds and functions have higher regularity, the rate can be faster.
ISSN:0022-2488
1089-7658
DOI:10.1063/5.0091016