Conduction mechanisms of ferroelectric La:HfO2 ultrathin films
Recently, ion-doped HfO2 thin films are highly desirable for the next-generation nonvolatile memories due to excellent compatibility with current complementary metal-oxide-semiconductor processes and robust ferroelectricity persisted down to the nanoscale. In this work, we study conduction mechanism...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2022-03, Vol.120 (13) |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Recently, ion-doped HfO2 thin films are highly desirable for the next-generation nonvolatile memories due to excellent compatibility with current complementary metal-oxide-semiconductor processes and robust ferroelectricity persisted down to the nanoscale. In this work, we study conduction mechanisms of 4 and 8 nm-thick La:HfO2 ultrathin films sandwiched between Pt and (La0.67,Sr0.33)MnO3 (LSMO) electrodes based on band alignments of the Pt/La:HfO2/LSMO, measured by x-ray photoelectron spectroscopy, and temperature-dependent current-voltage curves from 50 to 300 K. In a 4 nm-thick La:HfO2 thin-film capacitor, the conduction mechanism is found to be governed by direct tunneling at 50–100 K and phonon-assisted indirect tunneling when the temperature is further increased to 300 K in which the
(
La
Hf
4
+
3
+
)
′ acceptors are served as localized states, facilitating hole hopping through the La:HfO2 barrier. When the thickness is increased to 8 nm, the tunneling through a La:HfO2 layer is suppressed, and the current-voltage character becomes rectifying, which is regulated by the dominated La:HfO2/LSMO interfacial barrier. The transport for a forward bias of the La:HfO2/LSMO barrier is found to be governed by thermionic-field emission, exhibiting a temperature-independent build-in potential of ∼2.77 V. For the reverse bias, the Fowler–Nordheim tunneling is observed. The revealing of conduction mechanisms in terms of band alignments sheds light on leakage problems and facilitates the design of HfO2-based ferroelectric devices with excellent insulating character for high-performance memory applications. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/5.0083911 |