High precision reconstruction of silicon photonics chaos with stacked CNN-LSTM neural networks
Silicon-based optical chaos has many advantages, such as compatibility with complementary metal oxide semiconductor (CMOS) integration processes, ultra-small size, and high bandwidth. Generally, it is challenging to reconstruct chaos accurately because of its initial sensitivity and high complexity....
Gespeichert in:
Veröffentlicht in: | Chaos (Woodbury, N.Y.) N.Y.), 2022-05, Vol.32 (5), p.053112-053112 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 053112 |
---|---|
container_issue | 5 |
container_start_page | 053112 |
container_title | Chaos (Woodbury, N.Y.) |
container_volume | 32 |
creator | Cheng, Wei Feng, Junbo Wang, Yan Peng, Zheng Cheng, Hao Ren, Xiaodong Shuai, Yubei Zang, Shengyin Liu, Hao Pu, Xun Yang, Junbo Wu, Jiagui |
description | Silicon-based optical chaos has many advantages, such as compatibility with complementary metal oxide semiconductor (CMOS) integration processes, ultra-small size, and high bandwidth. Generally, it is challenging to reconstruct chaos accurately because of its initial sensitivity and high complexity. Here, a stacked convolutional neural network (CNN)-long short-term memory (LSTM) neural network model is proposed to reconstruct optical chaos with high accuracy. Our network model combines the advantages of both CNN and LSTM modules. Further, a theoretical model of integrated silicon photonics micro-cavity is introduced to generate chaotic time series for use in chaotic reconstruction experiments. Accordingly, we reconstructed the one-dimensional, two-dimensional, and three-dimensional chaos. The experimental results show that our model outperforms the LSTM, gated recurrent unit (GRU), and CNN models in terms of MSE, MAE, and R-squared metrics. For example, the proposed model has the best value of this metric, with a maximum improvement of 83.29% and 49.66%. Furthermore, 1D, 2D, and 3D chaos were all significantly improved with the reconstruction tasks. |
doi_str_mv | 10.1063/5.0082993 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0082993</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2672703366</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-dcc2e085e2668a1311e7cfddd584d3c7bb306068a039e38a9914da2fa81a6c9b3</originalsourceid><addsrcrecordid>eNp90F1L5DAUBuAgLn5f-Ack4I0KHU-aNk0uZfBjYda9cLy1ZJLUiXaamqQO--_NMOMuCO7VOUkeXsKL0DGBEQFGL8sRAM-FoFtojwAXWcV4vr3ayyIjJcAu2g_hBQBITssdtEtLVghRiT30dGef57j3RtlgXYfT4roQ_aDi6ugaHGxr0x3u5y66zqqA1Vy6gJc2znGIUr0ajcf399nkYfoLd2bwsk0jLp1_DYfoRyPbYI428wA93lxPx3fZ5Pftz_HVJFOU05hppXIDvDQ5Y1wSSoipVKO1LnmhqapmMwoM0hNQYSiXQpBCy7yRnEimxIweoLN1bu_d22BCrBc2KNO2sjNuCHXOqrwCShlL9PQLfXGD79LvkmJAGC8oJHW-Vsq7ELxp6t7bhfR_agL1qvS6rDelJ3uySRxmC6P_ys-WE7hYg6BslKti_5v2LX53_h-se93QD7B3mAo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2660168430</pqid></control><display><type>article</type><title>High precision reconstruction of silicon photonics chaos with stacked CNN-LSTM neural networks</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Cheng, Wei ; Feng, Junbo ; Wang, Yan ; Peng, Zheng ; Cheng, Hao ; Ren, Xiaodong ; Shuai, Yubei ; Zang, Shengyin ; Liu, Hao ; Pu, Xun ; Yang, Junbo ; Wu, Jiagui</creator><creatorcontrib>Cheng, Wei ; Feng, Junbo ; Wang, Yan ; Peng, Zheng ; Cheng, Hao ; Ren, Xiaodong ; Shuai, Yubei ; Zang, Shengyin ; Liu, Hao ; Pu, Xun ; Yang, Junbo ; Wu, Jiagui</creatorcontrib><description>Silicon-based optical chaos has many advantages, such as compatibility with complementary metal oxide semiconductor (CMOS) integration processes, ultra-small size, and high bandwidth. Generally, it is challenging to reconstruct chaos accurately because of its initial sensitivity and high complexity. Here, a stacked convolutional neural network (CNN)-long short-term memory (LSTM) neural network model is proposed to reconstruct optical chaos with high accuracy. Our network model combines the advantages of both CNN and LSTM modules. Further, a theoretical model of integrated silicon photonics micro-cavity is introduced to generate chaotic time series for use in chaotic reconstruction experiments. Accordingly, we reconstructed the one-dimensional, two-dimensional, and three-dimensional chaos. The experimental results show that our model outperforms the LSTM, gated recurrent unit (GRU), and CNN models in terms of MSE, MAE, and R-squared metrics. For example, the proposed model has the best value of this metric, with a maximum improvement of 83.29% and 49.66%. Furthermore, 1D, 2D, and 3D chaos were all significantly improved with the reconstruction tasks.</description><identifier>ISSN: 1054-1500</identifier><identifier>EISSN: 1089-7682</identifier><identifier>DOI: 10.1063/5.0082993</identifier><identifier>PMID: 35649979</identifier><identifier>CODEN: CHAOEH</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Artificial neural networks ; Chaos theory ; CMOS ; Image reconstruction ; Model accuracy ; Neural networks ; Optical communication ; Photonics ; Silicon ; Two dimensional models</subject><ispartof>Chaos (Woodbury, N.Y.), 2022-05, Vol.32 (5), p.053112-053112</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-dcc2e085e2668a1311e7cfddd584d3c7bb306068a039e38a9914da2fa81a6c9b3</citedby><cites>FETCH-LOGICAL-c383t-dcc2e085e2668a1311e7cfddd584d3c7bb306068a039e38a9914da2fa81a6c9b3</cites><orcidid>0000-0003-2743-5162</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,790,4498,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35649979$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cheng, Wei</creatorcontrib><creatorcontrib>Feng, Junbo</creatorcontrib><creatorcontrib>Wang, Yan</creatorcontrib><creatorcontrib>Peng, Zheng</creatorcontrib><creatorcontrib>Cheng, Hao</creatorcontrib><creatorcontrib>Ren, Xiaodong</creatorcontrib><creatorcontrib>Shuai, Yubei</creatorcontrib><creatorcontrib>Zang, Shengyin</creatorcontrib><creatorcontrib>Liu, Hao</creatorcontrib><creatorcontrib>Pu, Xun</creatorcontrib><creatorcontrib>Yang, Junbo</creatorcontrib><creatorcontrib>Wu, Jiagui</creatorcontrib><title>High precision reconstruction of silicon photonics chaos with stacked CNN-LSTM neural networks</title><title>Chaos (Woodbury, N.Y.)</title><addtitle>Chaos</addtitle><description>Silicon-based optical chaos has many advantages, such as compatibility with complementary metal oxide semiconductor (CMOS) integration processes, ultra-small size, and high bandwidth. Generally, it is challenging to reconstruct chaos accurately because of its initial sensitivity and high complexity. Here, a stacked convolutional neural network (CNN)-long short-term memory (LSTM) neural network model is proposed to reconstruct optical chaos with high accuracy. Our network model combines the advantages of both CNN and LSTM modules. Further, a theoretical model of integrated silicon photonics micro-cavity is introduced to generate chaotic time series for use in chaotic reconstruction experiments. Accordingly, we reconstructed the one-dimensional, two-dimensional, and three-dimensional chaos. The experimental results show that our model outperforms the LSTM, gated recurrent unit (GRU), and CNN models in terms of MSE, MAE, and R-squared metrics. For example, the proposed model has the best value of this metric, with a maximum improvement of 83.29% and 49.66%. Furthermore, 1D, 2D, and 3D chaos were all significantly improved with the reconstruction tasks.</description><subject>Artificial neural networks</subject><subject>Chaos theory</subject><subject>CMOS</subject><subject>Image reconstruction</subject><subject>Model accuracy</subject><subject>Neural networks</subject><subject>Optical communication</subject><subject>Photonics</subject><subject>Silicon</subject><subject>Two dimensional models</subject><issn>1054-1500</issn><issn>1089-7682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp90F1L5DAUBuAgLn5f-Ack4I0KHU-aNk0uZfBjYda9cLy1ZJLUiXaamqQO--_NMOMuCO7VOUkeXsKL0DGBEQFGL8sRAM-FoFtojwAXWcV4vr3ayyIjJcAu2g_hBQBITssdtEtLVghRiT30dGef57j3RtlgXYfT4roQ_aDi6ugaHGxr0x3u5y66zqqA1Vy6gJc2znGIUr0ajcf399nkYfoLd2bwsk0jLp1_DYfoRyPbYI428wA93lxPx3fZ5Pftz_HVJFOU05hppXIDvDQ5Y1wSSoipVKO1LnmhqapmMwoM0hNQYSiXQpBCy7yRnEimxIweoLN1bu_d22BCrBc2KNO2sjNuCHXOqrwCShlL9PQLfXGD79LvkmJAGC8oJHW-Vsq7ELxp6t7bhfR_agL1qvS6rDelJ3uySRxmC6P_ys-WE7hYg6BslKti_5v2LX53_h-se93QD7B3mAo</recordid><startdate>202205</startdate><enddate>202205</enddate><creator>Cheng, Wei</creator><creator>Feng, Junbo</creator><creator>Wang, Yan</creator><creator>Peng, Zheng</creator><creator>Cheng, Hao</creator><creator>Ren, Xiaodong</creator><creator>Shuai, Yubei</creator><creator>Zang, Shengyin</creator><creator>Liu, Hao</creator><creator>Pu, Xun</creator><creator>Yang, Junbo</creator><creator>Wu, Jiagui</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2743-5162</orcidid></search><sort><creationdate>202205</creationdate><title>High precision reconstruction of silicon photonics chaos with stacked CNN-LSTM neural networks</title><author>Cheng, Wei ; Feng, Junbo ; Wang, Yan ; Peng, Zheng ; Cheng, Hao ; Ren, Xiaodong ; Shuai, Yubei ; Zang, Shengyin ; Liu, Hao ; Pu, Xun ; Yang, Junbo ; Wu, Jiagui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-dcc2e085e2668a1311e7cfddd584d3c7bb306068a039e38a9914da2fa81a6c9b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial neural networks</topic><topic>Chaos theory</topic><topic>CMOS</topic><topic>Image reconstruction</topic><topic>Model accuracy</topic><topic>Neural networks</topic><topic>Optical communication</topic><topic>Photonics</topic><topic>Silicon</topic><topic>Two dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Wei</creatorcontrib><creatorcontrib>Feng, Junbo</creatorcontrib><creatorcontrib>Wang, Yan</creatorcontrib><creatorcontrib>Peng, Zheng</creatorcontrib><creatorcontrib>Cheng, Hao</creatorcontrib><creatorcontrib>Ren, Xiaodong</creatorcontrib><creatorcontrib>Shuai, Yubei</creatorcontrib><creatorcontrib>Zang, Shengyin</creatorcontrib><creatorcontrib>Liu, Hao</creatorcontrib><creatorcontrib>Pu, Xun</creatorcontrib><creatorcontrib>Yang, Junbo</creatorcontrib><creatorcontrib>Wu, Jiagui</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Chaos (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Wei</au><au>Feng, Junbo</au><au>Wang, Yan</au><au>Peng, Zheng</au><au>Cheng, Hao</au><au>Ren, Xiaodong</au><au>Shuai, Yubei</au><au>Zang, Shengyin</au><au>Liu, Hao</au><au>Pu, Xun</au><au>Yang, Junbo</au><au>Wu, Jiagui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High precision reconstruction of silicon photonics chaos with stacked CNN-LSTM neural networks</atitle><jtitle>Chaos (Woodbury, N.Y.)</jtitle><addtitle>Chaos</addtitle><date>2022-05</date><risdate>2022</risdate><volume>32</volume><issue>5</issue><spage>053112</spage><epage>053112</epage><pages>053112-053112</pages><issn>1054-1500</issn><eissn>1089-7682</eissn><coden>CHAOEH</coden><abstract>Silicon-based optical chaos has many advantages, such as compatibility with complementary metal oxide semiconductor (CMOS) integration processes, ultra-small size, and high bandwidth. Generally, it is challenging to reconstruct chaos accurately because of its initial sensitivity and high complexity. Here, a stacked convolutional neural network (CNN)-long short-term memory (LSTM) neural network model is proposed to reconstruct optical chaos with high accuracy. Our network model combines the advantages of both CNN and LSTM modules. Further, a theoretical model of integrated silicon photonics micro-cavity is introduced to generate chaotic time series for use in chaotic reconstruction experiments. Accordingly, we reconstructed the one-dimensional, two-dimensional, and three-dimensional chaos. The experimental results show that our model outperforms the LSTM, gated recurrent unit (GRU), and CNN models in terms of MSE, MAE, and R-squared metrics. For example, the proposed model has the best value of this metric, with a maximum improvement of 83.29% and 49.66%. Furthermore, 1D, 2D, and 3D chaos were all significantly improved with the reconstruction tasks.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>35649979</pmid><doi>10.1063/5.0082993</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-2743-5162</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1054-1500 |
ispartof | Chaos (Woodbury, N.Y.), 2022-05, Vol.32 (5), p.053112-053112 |
issn | 1054-1500 1089-7682 |
language | eng |
recordid | cdi_crossref_primary_10_1063_5_0082993 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Artificial neural networks Chaos theory CMOS Image reconstruction Model accuracy Neural networks Optical communication Photonics Silicon Two dimensional models |
title | High precision reconstruction of silicon photonics chaos with stacked CNN-LSTM neural networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T17%3A21%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20precision%20reconstruction%20of%20silicon%20photonics%20chaos%20with%20stacked%20CNN-LSTM%20neural%20networks&rft.jtitle=Chaos%20(Woodbury,%20N.Y.)&rft.au=Cheng,%20Wei&rft.date=2022-05&rft.volume=32&rft.issue=5&rft.spage=053112&rft.epage=053112&rft.pages=053112-053112&rft.issn=1054-1500&rft.eissn=1089-7682&rft.coden=CHAOEH&rft_id=info:doi/10.1063/5.0082993&rft_dat=%3Cproquest_cross%3E2672703366%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2660168430&rft_id=info:pmid/35649979&rfr_iscdi=true |