High precision reconstruction of silicon photonics chaos with stacked CNN-LSTM neural networks

Silicon-based optical chaos has many advantages, such as compatibility with complementary metal oxide semiconductor (CMOS) integration processes, ultra-small size, and high bandwidth. Generally, it is challenging to reconstruct chaos accurately because of its initial sensitivity and high complexity....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chaos (Woodbury, N.Y.) N.Y.), 2022-05, Vol.32 (5), p.053112-053112
Hauptverfasser: Cheng, Wei, Feng, Junbo, Wang, Yan, Peng, Zheng, Cheng, Hao, Ren, Xiaodong, Shuai, Yubei, Zang, Shengyin, Liu, Hao, Pu, Xun, Yang, Junbo, Wu, Jiagui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 053112
container_issue 5
container_start_page 053112
container_title Chaos (Woodbury, N.Y.)
container_volume 32
creator Cheng, Wei
Feng, Junbo
Wang, Yan
Peng, Zheng
Cheng, Hao
Ren, Xiaodong
Shuai, Yubei
Zang, Shengyin
Liu, Hao
Pu, Xun
Yang, Junbo
Wu, Jiagui
description Silicon-based optical chaos has many advantages, such as compatibility with complementary metal oxide semiconductor (CMOS) integration processes, ultra-small size, and high bandwidth. Generally, it is challenging to reconstruct chaos accurately because of its initial sensitivity and high complexity. Here, a stacked convolutional neural network (CNN)-long short-term memory (LSTM) neural network model is proposed to reconstruct optical chaos with high accuracy. Our network model combines the advantages of both CNN and LSTM modules. Further, a theoretical model of integrated silicon photonics micro-cavity is introduced to generate chaotic time series for use in chaotic reconstruction experiments. Accordingly, we reconstructed the one-dimensional, two-dimensional, and three-dimensional chaos. The experimental results show that our model outperforms the LSTM, gated recurrent unit (GRU), and CNN models in terms of MSE, MAE, and R-squared metrics. For example, the proposed model has the best value of this metric, with a maximum improvement of 83.29% and 49.66%. Furthermore, 1D, 2D, and 3D chaos were all significantly improved with the reconstruction tasks.
doi_str_mv 10.1063/5.0082993
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0082993</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2672703366</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-dcc2e085e2668a1311e7cfddd584d3c7bb306068a039e38a9914da2fa81a6c9b3</originalsourceid><addsrcrecordid>eNp90F1L5DAUBuAgLn5f-Ack4I0KHU-aNk0uZfBjYda9cLy1ZJLUiXaamqQO--_NMOMuCO7VOUkeXsKL0DGBEQFGL8sRAM-FoFtojwAXWcV4vr3ayyIjJcAu2g_hBQBITssdtEtLVghRiT30dGef57j3RtlgXYfT4roQ_aDi6ugaHGxr0x3u5y66zqqA1Vy6gJc2znGIUr0ajcf399nkYfoLd2bwsk0jLp1_DYfoRyPbYI428wA93lxPx3fZ5Pftz_HVJFOU05hppXIDvDQ5Y1wSSoipVKO1LnmhqapmMwoM0hNQYSiXQpBCy7yRnEimxIweoLN1bu_d22BCrBc2KNO2sjNuCHXOqrwCShlL9PQLfXGD79LvkmJAGC8oJHW-Vsq7ELxp6t7bhfR_agL1qvS6rDelJ3uySRxmC6P_ys-WE7hYg6BslKti_5v2LX53_h-se93QD7B3mAo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2660168430</pqid></control><display><type>article</type><title>High precision reconstruction of silicon photonics chaos with stacked CNN-LSTM neural networks</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Cheng, Wei ; Feng, Junbo ; Wang, Yan ; Peng, Zheng ; Cheng, Hao ; Ren, Xiaodong ; Shuai, Yubei ; Zang, Shengyin ; Liu, Hao ; Pu, Xun ; Yang, Junbo ; Wu, Jiagui</creator><creatorcontrib>Cheng, Wei ; Feng, Junbo ; Wang, Yan ; Peng, Zheng ; Cheng, Hao ; Ren, Xiaodong ; Shuai, Yubei ; Zang, Shengyin ; Liu, Hao ; Pu, Xun ; Yang, Junbo ; Wu, Jiagui</creatorcontrib><description>Silicon-based optical chaos has many advantages, such as compatibility with complementary metal oxide semiconductor (CMOS) integration processes, ultra-small size, and high bandwidth. Generally, it is challenging to reconstruct chaos accurately because of its initial sensitivity and high complexity. Here, a stacked convolutional neural network (CNN)-long short-term memory (LSTM) neural network model is proposed to reconstruct optical chaos with high accuracy. Our network model combines the advantages of both CNN and LSTM modules. Further, a theoretical model of integrated silicon photonics micro-cavity is introduced to generate chaotic time series for use in chaotic reconstruction experiments. Accordingly, we reconstructed the one-dimensional, two-dimensional, and three-dimensional chaos. The experimental results show that our model outperforms the LSTM, gated recurrent unit (GRU), and CNN models in terms of MSE, MAE, and R-squared metrics. For example, the proposed model has the best value of this metric, with a maximum improvement of 83.29% and 49.66%. Furthermore, 1D, 2D, and 3D chaos were all significantly improved with the reconstruction tasks.</description><identifier>ISSN: 1054-1500</identifier><identifier>EISSN: 1089-7682</identifier><identifier>DOI: 10.1063/5.0082993</identifier><identifier>PMID: 35649979</identifier><identifier>CODEN: CHAOEH</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Artificial neural networks ; Chaos theory ; CMOS ; Image reconstruction ; Model accuracy ; Neural networks ; Optical communication ; Photonics ; Silicon ; Two dimensional models</subject><ispartof>Chaos (Woodbury, N.Y.), 2022-05, Vol.32 (5), p.053112-053112</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-dcc2e085e2668a1311e7cfddd584d3c7bb306068a039e38a9914da2fa81a6c9b3</citedby><cites>FETCH-LOGICAL-c383t-dcc2e085e2668a1311e7cfddd584d3c7bb306068a039e38a9914da2fa81a6c9b3</cites><orcidid>0000-0003-2743-5162</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,790,4498,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35649979$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cheng, Wei</creatorcontrib><creatorcontrib>Feng, Junbo</creatorcontrib><creatorcontrib>Wang, Yan</creatorcontrib><creatorcontrib>Peng, Zheng</creatorcontrib><creatorcontrib>Cheng, Hao</creatorcontrib><creatorcontrib>Ren, Xiaodong</creatorcontrib><creatorcontrib>Shuai, Yubei</creatorcontrib><creatorcontrib>Zang, Shengyin</creatorcontrib><creatorcontrib>Liu, Hao</creatorcontrib><creatorcontrib>Pu, Xun</creatorcontrib><creatorcontrib>Yang, Junbo</creatorcontrib><creatorcontrib>Wu, Jiagui</creatorcontrib><title>High precision reconstruction of silicon photonics chaos with stacked CNN-LSTM neural networks</title><title>Chaos (Woodbury, N.Y.)</title><addtitle>Chaos</addtitle><description>Silicon-based optical chaos has many advantages, such as compatibility with complementary metal oxide semiconductor (CMOS) integration processes, ultra-small size, and high bandwidth. Generally, it is challenging to reconstruct chaos accurately because of its initial sensitivity and high complexity. Here, a stacked convolutional neural network (CNN)-long short-term memory (LSTM) neural network model is proposed to reconstruct optical chaos with high accuracy. Our network model combines the advantages of both CNN and LSTM modules. Further, a theoretical model of integrated silicon photonics micro-cavity is introduced to generate chaotic time series for use in chaotic reconstruction experiments. Accordingly, we reconstructed the one-dimensional, two-dimensional, and three-dimensional chaos. The experimental results show that our model outperforms the LSTM, gated recurrent unit (GRU), and CNN models in terms of MSE, MAE, and R-squared metrics. For example, the proposed model has the best value of this metric, with a maximum improvement of 83.29% and 49.66%. Furthermore, 1D, 2D, and 3D chaos were all significantly improved with the reconstruction tasks.</description><subject>Artificial neural networks</subject><subject>Chaos theory</subject><subject>CMOS</subject><subject>Image reconstruction</subject><subject>Model accuracy</subject><subject>Neural networks</subject><subject>Optical communication</subject><subject>Photonics</subject><subject>Silicon</subject><subject>Two dimensional models</subject><issn>1054-1500</issn><issn>1089-7682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp90F1L5DAUBuAgLn5f-Ack4I0KHU-aNk0uZfBjYda9cLy1ZJLUiXaamqQO--_NMOMuCO7VOUkeXsKL0DGBEQFGL8sRAM-FoFtojwAXWcV4vr3ayyIjJcAu2g_hBQBITssdtEtLVghRiT30dGef57j3RtlgXYfT4roQ_aDi6ugaHGxr0x3u5y66zqqA1Vy6gJc2znGIUr0ajcf399nkYfoLd2bwsk0jLp1_DYfoRyPbYI428wA93lxPx3fZ5Pftz_HVJFOU05hppXIDvDQ5Y1wSSoipVKO1LnmhqapmMwoM0hNQYSiXQpBCy7yRnEimxIweoLN1bu_d22BCrBc2KNO2sjNuCHXOqrwCShlL9PQLfXGD79LvkmJAGC8oJHW-Vsq7ELxp6t7bhfR_agL1qvS6rDelJ3uySRxmC6P_ys-WE7hYg6BslKti_5v2LX53_h-se93QD7B3mAo</recordid><startdate>202205</startdate><enddate>202205</enddate><creator>Cheng, Wei</creator><creator>Feng, Junbo</creator><creator>Wang, Yan</creator><creator>Peng, Zheng</creator><creator>Cheng, Hao</creator><creator>Ren, Xiaodong</creator><creator>Shuai, Yubei</creator><creator>Zang, Shengyin</creator><creator>Liu, Hao</creator><creator>Pu, Xun</creator><creator>Yang, Junbo</creator><creator>Wu, Jiagui</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2743-5162</orcidid></search><sort><creationdate>202205</creationdate><title>High precision reconstruction of silicon photonics chaos with stacked CNN-LSTM neural networks</title><author>Cheng, Wei ; Feng, Junbo ; Wang, Yan ; Peng, Zheng ; Cheng, Hao ; Ren, Xiaodong ; Shuai, Yubei ; Zang, Shengyin ; Liu, Hao ; Pu, Xun ; Yang, Junbo ; Wu, Jiagui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-dcc2e085e2668a1311e7cfddd584d3c7bb306068a039e38a9914da2fa81a6c9b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial neural networks</topic><topic>Chaos theory</topic><topic>CMOS</topic><topic>Image reconstruction</topic><topic>Model accuracy</topic><topic>Neural networks</topic><topic>Optical communication</topic><topic>Photonics</topic><topic>Silicon</topic><topic>Two dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Wei</creatorcontrib><creatorcontrib>Feng, Junbo</creatorcontrib><creatorcontrib>Wang, Yan</creatorcontrib><creatorcontrib>Peng, Zheng</creatorcontrib><creatorcontrib>Cheng, Hao</creatorcontrib><creatorcontrib>Ren, Xiaodong</creatorcontrib><creatorcontrib>Shuai, Yubei</creatorcontrib><creatorcontrib>Zang, Shengyin</creatorcontrib><creatorcontrib>Liu, Hao</creatorcontrib><creatorcontrib>Pu, Xun</creatorcontrib><creatorcontrib>Yang, Junbo</creatorcontrib><creatorcontrib>Wu, Jiagui</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Chaos (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Wei</au><au>Feng, Junbo</au><au>Wang, Yan</au><au>Peng, Zheng</au><au>Cheng, Hao</au><au>Ren, Xiaodong</au><au>Shuai, Yubei</au><au>Zang, Shengyin</au><au>Liu, Hao</au><au>Pu, Xun</au><au>Yang, Junbo</au><au>Wu, Jiagui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High precision reconstruction of silicon photonics chaos with stacked CNN-LSTM neural networks</atitle><jtitle>Chaos (Woodbury, N.Y.)</jtitle><addtitle>Chaos</addtitle><date>2022-05</date><risdate>2022</risdate><volume>32</volume><issue>5</issue><spage>053112</spage><epage>053112</epage><pages>053112-053112</pages><issn>1054-1500</issn><eissn>1089-7682</eissn><coden>CHAOEH</coden><abstract>Silicon-based optical chaos has many advantages, such as compatibility with complementary metal oxide semiconductor (CMOS) integration processes, ultra-small size, and high bandwidth. Generally, it is challenging to reconstruct chaos accurately because of its initial sensitivity and high complexity. Here, a stacked convolutional neural network (CNN)-long short-term memory (LSTM) neural network model is proposed to reconstruct optical chaos with high accuracy. Our network model combines the advantages of both CNN and LSTM modules. Further, a theoretical model of integrated silicon photonics micro-cavity is introduced to generate chaotic time series for use in chaotic reconstruction experiments. Accordingly, we reconstructed the one-dimensional, two-dimensional, and three-dimensional chaos. The experimental results show that our model outperforms the LSTM, gated recurrent unit (GRU), and CNN models in terms of MSE, MAE, and R-squared metrics. For example, the proposed model has the best value of this metric, with a maximum improvement of 83.29% and 49.66%. Furthermore, 1D, 2D, and 3D chaos were all significantly improved with the reconstruction tasks.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>35649979</pmid><doi>10.1063/5.0082993</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-2743-5162</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1054-1500
ispartof Chaos (Woodbury, N.Y.), 2022-05, Vol.32 (5), p.053112-053112
issn 1054-1500
1089-7682
language eng
recordid cdi_crossref_primary_10_1063_5_0082993
source AIP Journals Complete; Alma/SFX Local Collection
subjects Artificial neural networks
Chaos theory
CMOS
Image reconstruction
Model accuracy
Neural networks
Optical communication
Photonics
Silicon
Two dimensional models
title High precision reconstruction of silicon photonics chaos with stacked CNN-LSTM neural networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T17%3A21%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20precision%20reconstruction%20of%20silicon%20photonics%20chaos%20with%20stacked%20CNN-LSTM%20neural%20networks&rft.jtitle=Chaos%20(Woodbury,%20N.Y.)&rft.au=Cheng,%20Wei&rft.date=2022-05&rft.volume=32&rft.issue=5&rft.spage=053112&rft.epage=053112&rft.pages=053112-053112&rft.issn=1054-1500&rft.eissn=1089-7682&rft.coden=CHAOEH&rft_id=info:doi/10.1063/5.0082993&rft_dat=%3Cproquest_cross%3E2672703366%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2660168430&rft_id=info:pmid/35649979&rfr_iscdi=true