Sensitivity analysis of chaotic dynamical systems using a physics-constrained data-driven approach
This study proposes a new physics-constrained data-driven approach for sensitivity analysis and uncertainty quantification of large-scale chaotic Partial Differential Equations (PDEs). Unlike conventional sensitivity analysis, the proposed approach can manipulate the unsteady sensitivity function (i...
Gespeichert in:
Veröffentlicht in: | Physics of fluids (1994) 2022-01, Vol.34 (1) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study proposes a new physics-constrained data-driven approach for sensitivity analysis and uncertainty quantification of large-scale chaotic Partial Differential Equations (PDEs). Unlike conventional sensitivity analysis, the proposed approach can manipulate the unsteady sensitivity function (i.e., tangent) for PDE-constrained optimizations. In this new approach, high-dimensional governing equations from physical space are transformed into an unphysical space (i.e., Hilbert space) to develop a closure model in the form of a Reduced-Order Model (ROM). This closure model is derived explicitly from the governing equations to set strong constraints on manifolds in Hilbert space. Afterward, a new data sampling method is proposed to build a data-driven approach for this framework. A series of least squares minimizations are set in the form of a novel auto-encoder system to solve this closure model. To compute sensitivities, least-squares shadowing minimization is applied to the ROM. It is shown that the proposed approach can capture sensitivities for large-scale chaotic dynamical systems, where finite difference approximations fail. |
---|---|
ISSN: | 1070-6631 1089-7666 |
DOI: | 10.1063/5.0076074 |