Sensitivity analysis of chaotic dynamical systems using a physics-constrained data-driven approach

This study proposes a new physics-constrained data-driven approach for sensitivity analysis and uncertainty quantification of large-scale chaotic Partial Differential Equations (PDEs). Unlike conventional sensitivity analysis, the proposed approach can manipulate the unsteady sensitivity function (i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of fluids (1994) 2022-01, Vol.34 (1)
Hauptverfasser: Karbasian, Hamid R., Vermeire, Brian C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study proposes a new physics-constrained data-driven approach for sensitivity analysis and uncertainty quantification of large-scale chaotic Partial Differential Equations (PDEs). Unlike conventional sensitivity analysis, the proposed approach can manipulate the unsteady sensitivity function (i.e., tangent) for PDE-constrained optimizations. In this new approach, high-dimensional governing equations from physical space are transformed into an unphysical space (i.e., Hilbert space) to develop a closure model in the form of a Reduced-Order Model (ROM). This closure model is derived explicitly from the governing equations to set strong constraints on manifolds in Hilbert space. Afterward, a new data sampling method is proposed to build a data-driven approach for this framework. A series of least squares minimizations are set in the form of a novel auto-encoder system to solve this closure model. To compute sensitivities, least-squares shadowing minimization is applied to the ROM. It is shown that the proposed approach can capture sensitivities for large-scale chaotic dynamical systems, where finite difference approximations fail.
ISSN:1070-6631
1089-7666
DOI:10.1063/5.0076074