Protected solid-state qubits
The implementation of large-scale fault-tolerant quantum computers calls for the integration of millions of physical qubits with very low error rates. This outstanding engineering challenge may benefit from emerging qubits that are protected from dominating noise sources in the qubits' environm...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2021-12, Vol.119 (26) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 26 |
container_start_page | |
container_title | Applied physics letters |
container_volume | 119 |
creator | Danon, Jeroen Chatterjee, Anasua Gyenis, András Kuemmeth, Ferdinand |
description | The implementation of large-scale fault-tolerant quantum computers calls for the integration of millions of physical qubits with very low error rates. This outstanding engineering challenge may benefit from emerging qubits that are protected from dominating noise sources in the qubits' environment. In addition to different noise reduction techniques, protective approaches typically encode qubits in global or local decoherence-free subspaces, or in dynamical sweet spots of driven systems. We exemplify such protected qubits by reviewing the state-of-art in protected solid-state qubits based on semiconductors, superconductors, and hybrid devices. |
doi_str_mv | 10.1063/5.0073945 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0073945</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2614897518</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2781-84284ff696430e851d74109cadd31014ccafdd33535dc27e8e971372bb1c19b93</originalsourceid><addsrcrecordid>eNqdz01LAzEQBuAgCq7Vg3cPBU8KqZmdZJMcpfgFBT3oOezmA7bUZpvsCv57Iy149zQz8MwMLyGXwBbAGrwTC8Ykai6OSAVMSooA6phUjDGkjRZwSs5yXpdR1IgVuXpLcfR29G6e46Z3NI_t6Oe7qevHfE5OQrvJ_uJQZ-Tj8eF9-UxXr08vy_sVtbVUQBWvFQ-h0Q1H5pUAJzkwbVvnEBhwa9tQWhQoXNnwymsJKOuuAwu60zgj1_u7Q4q7yefRrOOUtuWlqRvgSksBqqibvbIp5px8MEPqP9v0bYCZ3_BGmEP4Ym_3Ntu-BOrj9n_4K6Y_aAYX8Ae122US</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2614897518</pqid></control><display><type>article</type><title>Protected solid-state qubits</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Danon, Jeroen ; Chatterjee, Anasua ; Gyenis, András ; Kuemmeth, Ferdinand</creator><creatorcontrib>Danon, Jeroen ; Chatterjee, Anasua ; Gyenis, András ; Kuemmeth, Ferdinand</creatorcontrib><description>The implementation of large-scale fault-tolerant quantum computers calls for the integration of millions of physical qubits with very low error rates. This outstanding engineering challenge may benefit from emerging qubits that are protected from dominating noise sources in the qubits' environment. In addition to different noise reduction techniques, protective approaches typically encode qubits in global or local decoherence-free subspaces, or in dynamical sweet spots of driven systems. We exemplify such protected qubits by reviewing the state-of-art in protected solid-state qubits based on semiconductors, superconductors, and hybrid devices.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0073945</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Fault tolerance ; Noise reduction ; Quantum computers ; Qubits (quantum computing) ; Solid state ; Subspaces ; Superconductors</subject><ispartof>Applied physics letters, 2021-12, Vol.119 (26)</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2781-84284ff696430e851d74109cadd31014ccafdd33535dc27e8e971372bb1c19b93</citedby><cites>FETCH-LOGICAL-c2781-84284ff696430e851d74109cadd31014ccafdd33535dc27e8e971372bb1c19b93</cites><orcidid>0000-0002-7060-178X ; 0000-0001-8088-8772 ; 0000-0002-1652-6707 ; 0000-0003-3675-7331</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0073945$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids></links><search><creatorcontrib>Danon, Jeroen</creatorcontrib><creatorcontrib>Chatterjee, Anasua</creatorcontrib><creatorcontrib>Gyenis, András</creatorcontrib><creatorcontrib>Kuemmeth, Ferdinand</creatorcontrib><title>Protected solid-state qubits</title><title>Applied physics letters</title><description>The implementation of large-scale fault-tolerant quantum computers calls for the integration of millions of physical qubits with very low error rates. This outstanding engineering challenge may benefit from emerging qubits that are protected from dominating noise sources in the qubits' environment. In addition to different noise reduction techniques, protective approaches typically encode qubits in global or local decoherence-free subspaces, or in dynamical sweet spots of driven systems. We exemplify such protected qubits by reviewing the state-of-art in protected solid-state qubits based on semiconductors, superconductors, and hybrid devices.</description><subject>Applied physics</subject><subject>Fault tolerance</subject><subject>Noise reduction</subject><subject>Quantum computers</subject><subject>Qubits (quantum computing)</subject><subject>Solid state</subject><subject>Subspaces</subject><subject>Superconductors</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqdz01LAzEQBuAgCq7Vg3cPBU8KqZmdZJMcpfgFBT3oOezmA7bUZpvsCv57Iy149zQz8MwMLyGXwBbAGrwTC8Ykai6OSAVMSooA6phUjDGkjRZwSs5yXpdR1IgVuXpLcfR29G6e46Z3NI_t6Oe7qevHfE5OQrvJ_uJQZ-Tj8eF9-UxXr08vy_sVtbVUQBWvFQ-h0Q1H5pUAJzkwbVvnEBhwa9tQWhQoXNnwymsJKOuuAwu60zgj1_u7Q4q7yefRrOOUtuWlqRvgSksBqqibvbIp5px8MEPqP9v0bYCZ3_BGmEP4Ym_3Ntu-BOrj9n_4K6Y_aAYX8Ae122US</recordid><startdate>20211227</startdate><enddate>20211227</enddate><creator>Danon, Jeroen</creator><creator>Chatterjee, Anasua</creator><creator>Gyenis, András</creator><creator>Kuemmeth, Ferdinand</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7060-178X</orcidid><orcidid>https://orcid.org/0000-0001-8088-8772</orcidid><orcidid>https://orcid.org/0000-0002-1652-6707</orcidid><orcidid>https://orcid.org/0000-0003-3675-7331</orcidid></search><sort><creationdate>20211227</creationdate><title>Protected solid-state qubits</title><author>Danon, Jeroen ; Chatterjee, Anasua ; Gyenis, András ; Kuemmeth, Ferdinand</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2781-84284ff696430e851d74109cadd31014ccafdd33535dc27e8e971372bb1c19b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Applied physics</topic><topic>Fault tolerance</topic><topic>Noise reduction</topic><topic>Quantum computers</topic><topic>Qubits (quantum computing)</topic><topic>Solid state</topic><topic>Subspaces</topic><topic>Superconductors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Danon, Jeroen</creatorcontrib><creatorcontrib>Chatterjee, Anasua</creatorcontrib><creatorcontrib>Gyenis, András</creatorcontrib><creatorcontrib>Kuemmeth, Ferdinand</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Danon, Jeroen</au><au>Chatterjee, Anasua</au><au>Gyenis, András</au><au>Kuemmeth, Ferdinand</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Protected solid-state qubits</atitle><jtitle>Applied physics letters</jtitle><date>2021-12-27</date><risdate>2021</risdate><volume>119</volume><issue>26</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>The implementation of large-scale fault-tolerant quantum computers calls for the integration of millions of physical qubits with very low error rates. This outstanding engineering challenge may benefit from emerging qubits that are protected from dominating noise sources in the qubits' environment. In addition to different noise reduction techniques, protective approaches typically encode qubits in global or local decoherence-free subspaces, or in dynamical sweet spots of driven systems. We exemplify such protected qubits by reviewing the state-of-art in protected solid-state qubits based on semiconductors, superconductors, and hybrid devices.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0073945</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-7060-178X</orcidid><orcidid>https://orcid.org/0000-0001-8088-8772</orcidid><orcidid>https://orcid.org/0000-0002-1652-6707</orcidid><orcidid>https://orcid.org/0000-0003-3675-7331</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2021-12, Vol.119 (26) |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_crossref_primary_10_1063_5_0073945 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Applied physics Fault tolerance Noise reduction Quantum computers Qubits (quantum computing) Solid state Subspaces Superconductors |
title | Protected solid-state qubits |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T18%3A17%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Protected%20solid-state%20qubits&rft.jtitle=Applied%20physics%20letters&rft.au=Danon,%20Jeroen&rft.date=2021-12-27&rft.volume=119&rft.issue=26&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0073945&rft_dat=%3Cproquest_cross%3E2614897518%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2614897518&rft_id=info:pmid/&rfr_iscdi=true |