Protected solid-state qubits

The implementation of large-scale fault-tolerant quantum computers calls for the integration of millions of physical qubits with very low error rates. This outstanding engineering challenge may benefit from emerging qubits that are protected from dominating noise sources in the qubits' environm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2021-12, Vol.119 (26)
Hauptverfasser: Danon, Jeroen, Chatterjee, Anasua, Gyenis, András, Kuemmeth, Ferdinand
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 26
container_start_page
container_title Applied physics letters
container_volume 119
creator Danon, Jeroen
Chatterjee, Anasua
Gyenis, András
Kuemmeth, Ferdinand
description The implementation of large-scale fault-tolerant quantum computers calls for the integration of millions of physical qubits with very low error rates. This outstanding engineering challenge may benefit from emerging qubits that are protected from dominating noise sources in the qubits' environment. In addition to different noise reduction techniques, protective approaches typically encode qubits in global or local decoherence-free subspaces, or in dynamical sweet spots of driven systems. We exemplify such protected qubits by reviewing the state-of-art in protected solid-state qubits based on semiconductors, superconductors, and hybrid devices.
doi_str_mv 10.1063/5.0073945
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0073945</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2614897518</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2781-84284ff696430e851d74109cadd31014ccafdd33535dc27e8e971372bb1c19b93</originalsourceid><addsrcrecordid>eNqdz01LAzEQBuAgCq7Vg3cPBU8KqZmdZJMcpfgFBT3oOezmA7bUZpvsCv57Iy149zQz8MwMLyGXwBbAGrwTC8Ykai6OSAVMSooA6phUjDGkjRZwSs5yXpdR1IgVuXpLcfR29G6e46Z3NI_t6Oe7qevHfE5OQrvJ_uJQZ-Tj8eF9-UxXr08vy_sVtbVUQBWvFQ-h0Q1H5pUAJzkwbVvnEBhwa9tQWhQoXNnwymsJKOuuAwu60zgj1_u7Q4q7yefRrOOUtuWlqRvgSksBqqibvbIp5px8MEPqP9v0bYCZ3_BGmEP4Ym_3Ntu-BOrj9n_4K6Y_aAYX8Ae122US</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2614897518</pqid></control><display><type>article</type><title>Protected solid-state qubits</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Danon, Jeroen ; Chatterjee, Anasua ; Gyenis, András ; Kuemmeth, Ferdinand</creator><creatorcontrib>Danon, Jeroen ; Chatterjee, Anasua ; Gyenis, András ; Kuemmeth, Ferdinand</creatorcontrib><description>The implementation of large-scale fault-tolerant quantum computers calls for the integration of millions of physical qubits with very low error rates. This outstanding engineering challenge may benefit from emerging qubits that are protected from dominating noise sources in the qubits' environment. In addition to different noise reduction techniques, protective approaches typically encode qubits in global or local decoherence-free subspaces, or in dynamical sweet spots of driven systems. We exemplify such protected qubits by reviewing the state-of-art in protected solid-state qubits based on semiconductors, superconductors, and hybrid devices.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0073945</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Fault tolerance ; Noise reduction ; Quantum computers ; Qubits (quantum computing) ; Solid state ; Subspaces ; Superconductors</subject><ispartof>Applied physics letters, 2021-12, Vol.119 (26)</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2781-84284ff696430e851d74109cadd31014ccafdd33535dc27e8e971372bb1c19b93</citedby><cites>FETCH-LOGICAL-c2781-84284ff696430e851d74109cadd31014ccafdd33535dc27e8e971372bb1c19b93</cites><orcidid>0000-0002-7060-178X ; 0000-0001-8088-8772 ; 0000-0002-1652-6707 ; 0000-0003-3675-7331</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0073945$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids></links><search><creatorcontrib>Danon, Jeroen</creatorcontrib><creatorcontrib>Chatterjee, Anasua</creatorcontrib><creatorcontrib>Gyenis, András</creatorcontrib><creatorcontrib>Kuemmeth, Ferdinand</creatorcontrib><title>Protected solid-state qubits</title><title>Applied physics letters</title><description>The implementation of large-scale fault-tolerant quantum computers calls for the integration of millions of physical qubits with very low error rates. This outstanding engineering challenge may benefit from emerging qubits that are protected from dominating noise sources in the qubits' environment. In addition to different noise reduction techniques, protective approaches typically encode qubits in global or local decoherence-free subspaces, or in dynamical sweet spots of driven systems. We exemplify such protected qubits by reviewing the state-of-art in protected solid-state qubits based on semiconductors, superconductors, and hybrid devices.</description><subject>Applied physics</subject><subject>Fault tolerance</subject><subject>Noise reduction</subject><subject>Quantum computers</subject><subject>Qubits (quantum computing)</subject><subject>Solid state</subject><subject>Subspaces</subject><subject>Superconductors</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqdz01LAzEQBuAgCq7Vg3cPBU8KqZmdZJMcpfgFBT3oOezmA7bUZpvsCv57Iy149zQz8MwMLyGXwBbAGrwTC8Ykai6OSAVMSooA6phUjDGkjRZwSs5yXpdR1IgVuXpLcfR29G6e46Z3NI_t6Oe7qevHfE5OQrvJ_uJQZ-Tj8eF9-UxXr08vy_sVtbVUQBWvFQ-h0Q1H5pUAJzkwbVvnEBhwa9tQWhQoXNnwymsJKOuuAwu60zgj1_u7Q4q7yefRrOOUtuWlqRvgSksBqqibvbIp5px8MEPqP9v0bYCZ3_BGmEP4Ym_3Ntu-BOrj9n_4K6Y_aAYX8Ae122US</recordid><startdate>20211227</startdate><enddate>20211227</enddate><creator>Danon, Jeroen</creator><creator>Chatterjee, Anasua</creator><creator>Gyenis, András</creator><creator>Kuemmeth, Ferdinand</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7060-178X</orcidid><orcidid>https://orcid.org/0000-0001-8088-8772</orcidid><orcidid>https://orcid.org/0000-0002-1652-6707</orcidid><orcidid>https://orcid.org/0000-0003-3675-7331</orcidid></search><sort><creationdate>20211227</creationdate><title>Protected solid-state qubits</title><author>Danon, Jeroen ; Chatterjee, Anasua ; Gyenis, András ; Kuemmeth, Ferdinand</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2781-84284ff696430e851d74109cadd31014ccafdd33535dc27e8e971372bb1c19b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Applied physics</topic><topic>Fault tolerance</topic><topic>Noise reduction</topic><topic>Quantum computers</topic><topic>Qubits (quantum computing)</topic><topic>Solid state</topic><topic>Subspaces</topic><topic>Superconductors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Danon, Jeroen</creatorcontrib><creatorcontrib>Chatterjee, Anasua</creatorcontrib><creatorcontrib>Gyenis, András</creatorcontrib><creatorcontrib>Kuemmeth, Ferdinand</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Danon, Jeroen</au><au>Chatterjee, Anasua</au><au>Gyenis, András</au><au>Kuemmeth, Ferdinand</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Protected solid-state qubits</atitle><jtitle>Applied physics letters</jtitle><date>2021-12-27</date><risdate>2021</risdate><volume>119</volume><issue>26</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>The implementation of large-scale fault-tolerant quantum computers calls for the integration of millions of physical qubits with very low error rates. This outstanding engineering challenge may benefit from emerging qubits that are protected from dominating noise sources in the qubits' environment. In addition to different noise reduction techniques, protective approaches typically encode qubits in global or local decoherence-free subspaces, or in dynamical sweet spots of driven systems. We exemplify such protected qubits by reviewing the state-of-art in protected solid-state qubits based on semiconductors, superconductors, and hybrid devices.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0073945</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-7060-178X</orcidid><orcidid>https://orcid.org/0000-0001-8088-8772</orcidid><orcidid>https://orcid.org/0000-0002-1652-6707</orcidid><orcidid>https://orcid.org/0000-0003-3675-7331</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2021-12, Vol.119 (26)
issn 0003-6951
1077-3118
language eng
recordid cdi_crossref_primary_10_1063_5_0073945
source AIP Journals Complete; Alma/SFX Local Collection
subjects Applied physics
Fault tolerance
Noise reduction
Quantum computers
Qubits (quantum computing)
Solid state
Subspaces
Superconductors
title Protected solid-state qubits
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T18%3A17%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Protected%20solid-state%20qubits&rft.jtitle=Applied%20physics%20letters&rft.au=Danon,%20Jeroen&rft.date=2021-12-27&rft.volume=119&rft.issue=26&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0073945&rft_dat=%3Cproquest_cross%3E2614897518%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2614897518&rft_id=info:pmid/&rfr_iscdi=true