Q-factor optimization for high-beta 650 MHz cavities for PIP-II

High Q-factors are of utmost importance to minimize losses of superconducting radio-frequency cavities deployed in continuous wave particle accelerators. This study elucidates the surface treatment that can maximize the Q-factors in high-beta 650 MHz elliptical niobium cavities. State-of-the-art sur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2021-11, Vol.130 (17)
Hauptverfasser: Martinello, M., Bice, D. J., Boffo, C., Chandrasekeran, S. K., Eremeev, G. V., Furuta, F., Grassellino, A., Melnychuk, O., Sergatskov, D. A., Wu, G., Reid, T. C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:High Q-factors are of utmost importance to minimize losses of superconducting radio-frequency cavities deployed in continuous wave particle accelerators. This study elucidates the surface treatment that can maximize the Q-factors in high-beta 650 MHz elliptical niobium cavities. State-of-the-art surface treatments are applied in many single-cell cavities, and surface resistance studies are performed to understand the microwave dissipation at this unexplored frequency. The nitrogen doping treatment is confirmed to be necessary to maximize the Q-factors at medium RF fields. We applied this treatment in five-cell high-beta 650 MHz cavities and demonstrated that extremely high Q-factors were obtained at medium RF fields with this treatment. We also demonstrated that adding a cold electropolishing step after N-doping is crucial to push the quench field of multicell cavities to higher gradients.
ISSN:0021-8979
1089-7550
DOI:10.1063/5.0068531