Particle resonances in stellarators

Resonances of high energy particles in magnetic confinement devices due to electromagnetic instabilities can strongly modify the particle distribution, leading to a reduction in fusion power and even discharge termination and particle loss to the device walls through an avalanche. The existence of a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of plasmas 2021-09, Vol.28 (9)
Hauptverfasser: White, Roscoe, Ethier, Stephane
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Resonances of high energy particles in magnetic confinement devices due to electromagnetic instabilities can strongly modify the particle distribution, leading to a reduction in fusion power and even discharge termination and particle loss to the device walls through an avalanche. The existence of a mode particle resonance depends on the properties of the equilibrium and particle parameters, and their number, location, and density can vary with device design. Recently, the advent of more powerful computing capabilities and advanced theoretical understanding has led to the design of non-axisymmetric devices or stellarators, which could prove to be more advantageous than tokamaks. Stellarators have the advantage of being immune to major disruptions because of the very low plasma current. One of the problems shared by both types of devices is the existence of resonances in particle orbits, which can lead to large amplitude high frequency instabilities and subsequent induced particle loss. We examine the number of resonances, their location, and dependence on particle energy for some stellarator designs.
ISSN:1070-664X
1089-7674
DOI:10.1063/5.0060679