Lyapunov exponents for Hamiltonian systems under small Lévy-type perturbations

This work is to investigate the (top) Lyapunov exponent for a class of Hamiltonian systems under small non-Gaussian Lévy-type noise with bounded jumps. In a suitable moving frame, the linearization of such a system can be regarded as a small perturbation of a nilpotent linear system. The Lyapunov ex...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chaos (Woodbury, N.Y.) N.Y.), 2021-08, Vol.31 (8), p.081101-081101
Hauptverfasser: Chao, Ying, Wei, Pingyuan, Duan, Jinqiao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work is to investigate the (top) Lyapunov exponent for a class of Hamiltonian systems under small non-Gaussian Lévy-type noise with bounded jumps. In a suitable moving frame, the linearization of such a system can be regarded as a small perturbation of a nilpotent linear system. The Lyapunov exponent is then estimated by taking a Pinsky–Wihstutz transformation and applying the Khas’minskii formula, under appropriate assumptions on smoothness, ergodicity, and integrability. Finally, two examples are presented to illustrate our results.
ISSN:1054-1500
1089-7682
DOI:10.1063/5.0058716